IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v24y2015i3p491-505.html
   My bibliography  Save this article

D-optimal experimental designs for a growth model applied to a Holstein-Friesian dairy farm

Author

Listed:
  • Santiago Campos-Barreiro
  • Jesús López-Fidalgo

Abstract

The body mass growth of organisms is usually represented in terms of what is known as ontogenetic growth models, which represent the relation of dependence between the mass of the body and time. This paper discusses design issues of West’s ontogenetic growth model applied to a Holstein-Friesian dairy farm in the northwest of Spain. D-optimal experimental designs were computed to obtain an optimal fitting of the model. A correlation structure has been included in the statistical model due to the fact that observations on a particular animal are not independent. The choice of a robust correlation structure is an important contribution of this paper; it provides a methodology that can be used for any correlation structure. The experimental designs undertaken provide a tool to control the proper weight of heifers, which will help improve their productivity and, by extension, the competitiveness of the dairy farm. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Santiago Campos-Barreiro & Jesús López-Fidalgo, 2015. "D-optimal experimental designs for a growth model applied to a Holstein-Friesian dairy farm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 491-505, September.
  • Handle: RePEc:spr:stmapp:v:24:y:2015:i:3:p:491-505
    DOI: 10.1007/s10260-014-0288-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-014-0288-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-014-0288-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. López‐Fidalgo & C. Tommasi & P. C. Trandafir, 2007. "An optimal experimental design criterion for discriminating between non‐normal models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 231-242, April.
    2. Zhigljavsky, Anatoly & Dette, Holger & Pepelyshev, Andrey, 2010. "A New Approach to Optimal Design for Linear Models With Correlated Observations," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1093-1103.
    3. J. López Fidalgo & I. M. Ortiz Rodr�guez & Weng Kee Wong, 2011. "Design issues for population growth models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 501-512, November.
    4. Boukouvalas, A. & Cornford, D. & Stehlík, M., 2014. "Optimal design for correlated processes with input-dependent noise," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1088-1102.
    5. Mariano Amo-Salas & Jesús López-Fidalgo & Emilio Porcu, 2013. "Optimal designs for some stochastic processes whose covariance is a function of the mean," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 159-181, March.
    6. Tommasi, C. & Rodríguez-Díaz, J.M. & Santos-Martín, M.T., 2014. "Integral approximations for computing optimum designs in random effects logistic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1208-1220.
    7. Milan Stehlík & Juan Rodríguez-Díaz & Werner Müller & Jesús López-Fidalgo, 2008. "Optimal allocation of bioassays in the case of parametrized covariance functions: an application to Lung’s retention of radioactive particles," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 56-68, May.
    8. Geoffrey B. West & James H. Brown & Brian J. Enquist, 2001. "A general model for ontogenetic growth," Nature, Nature, vol. 413(6856), pages 628-631, October.
    9. Ucinski Dariusz & Atkinson Anthony C., 2004. "Experimental Design for Time-Dependent Models with Correlated Observations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
    2. Elham Yousefi & Luc Pronzato & Markus Hainy & Werner G. Müller & Henry P. Wynn, 2023. "Discrimination between Gaussian process models: active learning and static constructions," Statistical Papers, Springer, vol. 64(4), pages 1275-1304, August.
    3. Rivas-López, M.J. & Yu, R.C. & López-Fidalgo, J. & Ruiz, G., 2017. "Optimal experimental design on the loading frequency for a probabilistic fatigue model for plain and fibre-reinforced concrete," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 363-374.
    4. S. G. J. Senarathne & C. C. Drovandi & J. M. McGree, 2020. "Bayesian sequential design for Copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 454-478, June.
    5. Barberis, L. & Condat, C.A., 2012. "Describing interactive growth using vector universalities," Ecological Modelling, Elsevier, vol. 227(C), pages 56-63.
    6. Sigourney, Douglas B. & Munch, Stephan B. & Letcher, Benjamin H., 2012. "Combining a Bayesian nonparametric method with a hierarchical framework to estimate individual and temporal variation in growth," Ecological Modelling, Elsevier, vol. 247(C), pages 125-134.
    7. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    8. Carl-Johan Dalgaard & Holger Strulik, 2014. "Physiological Constraints and Comparative Economic Development," Discussion Papers 14-21, University of Copenhagen. Department of Economics.
    9. Dette, Holger & Titoff, Stefanie, 2008. "Optimal discrimination designs," Technical Reports 2008,06, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Carl-Johan Dalgaard & Holger Strulik, 2015. "The physiological foundations of the wealth of nations," Journal of Economic Growth, Springer, vol. 20(1), pages 37-73, March.
    11. Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
    12. Norbert Brunner & Manfred Kühleitner & Werner Georg Nowak & Katharina Renner-Martin & Klaus Scheicher, 2019. "Comparing growth patterns of three species: Similarities and differences," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-9, October.
    13. Giacomini, Henrique C. & DeAngelis, Donald L. & Trexler, Joel C. & Petrere, Miguel, 2013. "Trait contributions to fish community assembly emerge from trophic interactions in an individual-based model," Ecological Modelling, Elsevier, vol. 251(C), pages 32-43.
    14. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    15. Dette, Holger & Schorning, Kirsten & Konstantinou, Maria, 2017. "Optimal designs for comparing regression models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 273-286.
    16. Woods, David C. & McGree, James M. & Lewis, Susan M., 2017. "Model selection via Bayesian information capacity designs for generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 226-238.
    17. Carl-Johan Dalgaard & Casper Worm Hansen & Holger Strulik, 2017. "Accounting for Fetal Origins: Health Capital vs. Health Deficits," Discussion Papers 17-11, University of Copenhagen. Department of Economics.
    18. Carl‐Johan Dalgaard & Holger Strulik, 2016. "Physiology and Development: Why the West is Taller Than the Rest," Economic Journal, Royal Economic Society, vol. 126(598), pages 2292-2323, December.
    19. Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.
    20. Sébastien Benzekry & Clare Lamont & Afshin Beheshti & Amanda Tracz & John M L Ebos & Lynn Hlatky & Philip Hahnfeldt, 2014. "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:24:y:2015:i:3:p:491-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.