IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v22y2013i2p183-207.html
   My bibliography  Save this article

Multilevel dimensionality-reduction methods

Author

Listed:
  • Pietro Lovaglio

    ()

  • Giorgio Vittadini

    ()

Abstract

When data sets are multilevel (group nesting or repeated measures), different sources of variations must be identified. In the framework of unsupervised analyses, multilevel simultaneous component analysis (MSCA) has recently been proposed as the most satisfactory option for analyzing multilevel data. MSCA estimates submodels for the different levels in data and thereby separates the “within”-subject and “between”-subject variations in the variables. Following the principles of MSCA and the strategy of decomposing the available data matrix into orthogonal blocks, and taking into account the between- and the within data structures, we generalize, in a multilevel perspective, multivariate models in which a matrix of response variables can be used to guide the projections (formed by responses predicted by explanatory variables or by a limited number of their combinations/composites) into choices of meaningful directions. To this end, the current paper proposes the multilevel version of the multivariate regression model and dimensionality-reduction methods (used to predict responses with fewer linear composites of explanatory variables). The principle findings of the study are that the minimization of the loss functions related to multivariate regression, principal-component regression, reduced-rank regression, and canonical-correlation regression are equivalent to the separate minimization of the sum of two separate loss functions corresponding to the between and within structures, under some constraints. The paper closes with a case study of an application focusing on the relationships between mental health severity and the intensity of care in the Lombardy region mental health system. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Pietro Lovaglio & Giorgio Vittadini, 2013. "Multilevel dimensionality-reduction methods," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 183-207, June.
  • Handle: RePEc:spr:stmapp:v:22:y:2013:i:2:p:183-207
    DOI: 10.1007/s10260-012-0215-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-012-0215-2
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    2. Abraham, Bovas & Merola, Giovanni, 2005. "Dimensionality reduction approach to multivariate prediction," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 5-16, January.
    3. Harvey Goldstein & Roderick McDonald, 1988. "A general model for the analysis of multilevel data," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 455-467, December.
    4. J. Gower, 1975. "Generalized procrustes analysis," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 33-51, March.
    5. Arnold Wollenberg, 1977. "Redundancy analysis an alternative for canonical correlation analysis," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 207-219, June.
    6. William Meredith & Roger Millsap, 1985. "On component analyses," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 495-507, December.
    7. Heungsun Hwang & Yoshio Takane, 2004. "Generalized structured component analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(1), pages 81-99, March.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:22:y:2013:i:2:p:183-207. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.