IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v18y2009i1p49-61.html
   My bibliography  Save this article

On the clustering term in ecological analysis: how do different prior specifications affect results?

Author

Listed:
  • Dolores Catelan
  • Annibale Biggeri
  • Corrado Lagazio

Abstract

No abstract is available for this item.

Suggested Citation

  • Dolores Catelan & Annibale Biggeri & Corrado Lagazio, 2009. "On the clustering term in ecological analysis: how do different prior specifications affect results?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 49-61, March.
  • Handle: RePEc:spr:stmapp:v:18:y:2009:i:1:p:49-61
    DOI: 10.1007/s10260-007-0089-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-007-0089-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-007-0089-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    2. Kelsall J. & Eld J.W., 2002. "Modeling Spatial Variation in Disease Risk: A Geostatistical Approach," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 692-701, September.
    3. Green P.J. & Richardson S., 2002. "Hidden Markov Models and Disease Mapping," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1055-1070, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
    2. Mahdi Hosseinpouri & Majid Jafari Khaledi, 2019. "An area-specific stick breaking process for spatial data," Statistical Papers, Springer, vol. 60(1), pages 199-221, February.
    3. Mohammadreza Mohebbi & Rory Wolfe & Andrew Forbes, 2014. "Disease Mapping and Regression with Count Data in the Presence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach," IJERPH, MDPI, vol. 11(1), pages 1-20, January.
    4. Hong-Ding Yang & Yun-Huan Lee & Che-Yang Lin, 2023. "On Study of the Occurrence of Earth-Size Planets in Kepler Mission Using Spatial Poisson Model," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    5. Ugarte, M.D. & Goicoa, T. & Militino, A.F., 2009. "Empirical Bayes and Fully Bayes procedures to detect high-risk areas in disease mapping," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2938-2949, June.
    6. Vidal Rodeiro, Carmen L. & Lawson, Andrew B., 2005. "An evaluation of the edge effects in disease map modelling," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 45-62, April.
    7. Zhang Hongmei & Gan Jianjun, 2012. "A Reproducing Kernel-Based Spatial Model in Poisson Regressions," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-26, October.
    8. Zhang, Tonglin & Lin, Ge, 2016. "On Moran’s I coefficient under heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 83-94.
    9. Lee, Dae-Jin & Durbán, María, 2008. "Smooth-car mixed models for spatial count data," DES - Working Papers. Statistics and Econometrics. WS ws085820, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Ayma Anza, Diego Armando & Durbán, María & Lee, Dae-Jin & Eilers, Paul, 2015. "Penalized composite link mixed models for two-dimensional count data," DES - Working Papers. Statistics and Econometrics. WS ws1509, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Lee, Dae-Jin & Durbán, María, 2009. "Smooth-CAR mixed models for spatial count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2968-2979, June.
    12. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    13. Miklos Arato, N. & Dryden, Ian L. & Taylor, Charles C., 2006. "Hierarchical Bayesian modelling of spatial age-dependent mortality," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1347-1363, November.
    14. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    15. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    16. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    17. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    18. Vanessa Santos-Sánchez & Juan Antonio Córdoba-Doña & Javier García-Pérez & Antonio Escolar-Pujolar & Lucia Pozzi & Rebeca Ramis, 2020. "Cancer Mortality and Deprivation in the Proximity of Polluting Industrial Facilities in an Industrial Region of Spain," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    19. Berti, Patrizia & Dreassi, Emanuela & Rigo, Pietro, 2014. "Compatibility results for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 190-203.
    20. Louise Choo & Stephen G. Walker, 2008. "A new approach to investigating spatial variations of disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 395-405, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:18:y:2009:i:1:p:49-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.