IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v17y2025i2d10.1007_s12561-024-09439-4.html
   My bibliography  Save this article

Functional Causal Inference with Time-to-Event Data

Author

Listed:
  • Xiyuan Gao

    (University of Missouri-Columbia)

  • Jiayi Wang

    (University of Texas at Dallas)

  • Guanyu Hu

    (University of Texas Health Science Center at Houston)

  • Jianguo Sun

    (University of Missouri-Columbia)

Abstract

Functional data analysis has proven to be a powerful tool for capturing and analyzing complex patterns and relationships in a variety of fields, allowing for more precise modeling, visualization, and decision-making. For example, in healthcare, functional data such as medical images can help doctors make more accurate diagnoses and develop more effective treatment plans. However, understanding the causal relationships between functional predictors and time-to-event outcomes remains a challenge. To address this, we propose a functional causal framework including a functional accelerated failure time (FAFT) model and three causal effect estimation approaches. The regression adjustment approach is based on conditional FAFT with subsequent confounding marginalization, while the functional-inverse-probability-weighting approach is based on marginal FAFT with well-defined functional propensity scores. The double robust approach combines the strengths of both methods and is robust to model specifications. Our method provides accurate causal effect estimations and is robust to different censoring rates. We demonstrate the performance of our framework with simulations and real-world data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Our findings provide more precise subregions of the hippocampus that align with medical research, highlighting the power of this work for improving healthcare outcomes.

Suggested Citation

  • Xiyuan Gao & Jiayi Wang & Guanyu Hu & Jianguo Sun, 2025. "Functional Causal Inference with Time-to-Event Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(2), pages 297-319, July.
  • Handle: RePEc:spr:stabio:v:17:y:2025:i:2:d:10.1007_s12561-024-09439-4
    DOI: 10.1007/s12561-024-09439-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-024-09439-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-024-09439-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dehan Kong & Shu Yang & Linbo Wang, 2022. "Identifiability of causal effects with multiple causes and a binary outcome [Statistical inference in factor analysis]," Biometrika, Biometrika Trust, vol. 109(1), pages 265-272.
    2. Zhang, Xiaoke & Xue, Wu & Wang, Qiyue, 2021. "Covariate balancing functional propensity score for functional treatments in cross-sectional observational studies," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    3. Dehan Kong & Joseph G. Ibrahim & Eunjee Lee & Hongtu Zhu, 2018. "FLCRM: Functional linear cox regression model," Biometrics, The International Biometric Society, vol. 74(1), pages 109-117, March.
    4. S Yang & K Pieper & F Cools, 2020. "Semiparametric estimation of structural failure time models in continuous-time processes," Biometrika, Biometrika Trust, vol. 107(1), pages 123-136.
    5. Cao, Yongxiu & Yu, Jichang, 2023. "Adjusting for unmeasured confounding in survival causal effect using validation data," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    6. Zhezhen Jin & D. Y. Lin & Zhiliang Ying, 2006. "On least-squares regression with censored data," Biometrika, Biometrika Trust, vol. 93(1), pages 147-161, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
    2. Ghosal, Rahul & Matabuena, Marcos & Ghosh, Sujit K., 2025. "Functional time transformation model with applications to digital health," Computational Statistics & Data Analysis, Elsevier, vol. 207(C).
    3. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    4. Lu, Xuewen, 2010. "Asymptotic distributions of two "synthetic data" estimators for censored single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 999-1015, April.
    5. Gabriela Ciuperca, 2025. "Right-censored models by the expectile method," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(1), pages 149-186, January.
    6. Zhou, Mai & Li, Gang, 2008. "Empirical likelihood analysis of the Buckley-James estimator," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 649-664, April.
    7. K. Hendrickx & P. Janssen & A. Verhasselt, 2018. "Penalized spline estimation in varying coefficient models with censored data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 871-895, December.
    8. Zhang, Jiajia & Peng, Yingwei, 2009. "Crossing hazard functions in common survival models," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2124-2130, October.
    9. Choi, Taehwa & Kim, Arlene K.H. & Choi, Sangbum, 2021. "Semiparametric least-squares regression with doubly-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    10. Fan, Caiyun & Lu, Wenbin & Zhou, Yong, 2021. "Testing error heterogeneity in censored linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    11. Sudaraka Tholkage & Qi Zheng & Karunarathna B. Kulasekera, 2022. "Conditional Kaplan–Meier Estimator with Functional Covariates for Time-to-Event Data," Stats, MDPI, vol. 5(4), pages 1-17, November.
    12. Shu Yang, 2022. "Semiparametric estimation of structural nested mean models with irregularly spaced longitudinal observations," Biometrics, The International Biometric Society, vol. 78(3), pages 937-949, September.
    13. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    14. Ying Ding & Bin Nan, 2015. "Estimating Mean Survival Time: When is it Possible?," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 397-413, June.
    15. Chengxin Wu & Nengxiang Ling & Philippe Vieu & Guoliang Fan, 2025. "Composite quantile estimation in partially functional linear regression model with randomly censored responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(1), pages 28-47, March.
    16. Min Zhang & Marie Davidian, 2008. "“Smooth” Semiparametric Regression Analysis for Arbitrarily Censored Time-to-Event Data," Biometrics, The International Biometric Society, vol. 64(2), pages 567-576, June.
    17. Yu, Lili & Peace, Karl E., 2012. "Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2675-2687.
    18. Wang, Xiaoguang & Shi, Xinyong, 2014. "Robust estimation for survival partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 140-152.
    19. Marta Spreafico & Francesca Ieva & Marta Fiocco, 2023. "Modelling time-varying covariates effect on survival via functional data analysis: application to the MRC BO06 trial in osteosarcoma," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 271-298, March.
    20. Wanrong Liu & Xuewen Lu, 2009. "Weighted least squares method for censored linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 787-799.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:17:y:2025:i:2:d:10.1007_s12561-024-09439-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.