IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i4d10.1007_s43069-023-00261-0.html
   My bibliography  Save this article

Automated Slideshow Design from a Set of Photos Based on a Hybrid Metaheuristic Approach

Author

Listed:
  • Labeat Arbneshi

    (University of Prishtina)

  • Kadri Sylejmani

    (University of Prishtina)

  • Ndriçim Halili

    (University of Prishtina)

  • Erzen Krasniqi

    (University of Prishtina)

Abstract

Automated slideshow creation techniques can help in arranging various multimedia elements, such as photos, videos, and graphics, into a cohesive and engaging story. This paper specifically focuses on utilizing metaheuristic algorithms to create compelling slideshows based on a predetermined set of photos. The work presents a two-stage algorithm for solving the photo slideshow problem as defined in the qualification round of Google Hash Code 2019. In the first stage, a Genetic Algorithm is applied to produce a good-quality initial solution. In the second stage, an Iterated Local Search metaheuristic is used to further optimize the solution. Additionally, an Integer Linear Programming model is presented for comparison purposes, which is used to solve a subset of instances that are of smaller sizes. The computational study uses a challenging test set of four instances and demonstrates that the proposed approach produces comparable results to the best performing algorithms in the competition. For two of the instances, new benchmark results are obtained. Furthermore, the proposed solution is tested on a newly generated test set of 55 instances, consisting of real-life and synthetic data. The results indicate that the proposed approach can effectively produce solutions of good quality for smaller instances and efficiently solve larger instances within a short period.

Suggested Citation

  • Labeat Arbneshi & Kadri Sylejmani & Ndriçim Halili & Erzen Krasniqi, 2023. "Automated Slideshow Design from a Set of Photos Based on a Hybrid Metaheuristic Approach," SN Operations Research Forum, Springer, vol. 4(4), pages 1-28, December.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00261-0
    DOI: 10.1007/s43069-023-00261-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00261-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00261-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    2. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    2. Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
    3. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    4. Michael D. Moskal & Erdi Dasdemir & Rajan Batta, 2023. "Unmanned Aerial Vehicle Information Collection Missions with Uncertain Characteristics," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 120-137, January.
    5. Krzysztof Ostrowski & Joanna Karbowska-Chilinska & Jolanta Koszelew & Pawel Zabielski, 2017. "Evolution-inspired local improvement algorithm solving orienteering problem," Annals of Operations Research, Springer, vol. 253(1), pages 519-543, June.
    6. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.
    7. Verbeeck, C. & Vansteenwegen, P. & Aghezzaf, E.-H., 2016. "Solving the stochastic time-dependent orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 255(3), pages 699-718.
    8. Balcik, Burcu, 2017. "Site selection and vehicle routing for post-disaster rapid needs assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 30-58.
    9. Qinxiao Yu & Yossiri Adulyasak & Louis-Martin Rousseau & Ning Zhu & Shoufeng Ma, 2022. "Team Orienteering with Time-Varying Profit," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 262-280, January.
    10. Gambardella, L.M. & Montemanni, R. & Weyland, D., 2012. "Coupling ant colony systems with strong local searches," European Journal of Operational Research, Elsevier, vol. 220(3), pages 831-843.
    11. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    12. Oleg Shcherbina & Elena Shembeleva, 2014. "Modeling recreational systems using optimization techniques and information technologies," Annals of Operations Research, Springer, vol. 221(1), pages 309-329, October.
    13. Afsar, Hasan Murat & Afsar, Sezin & Palacios, Juan José, 2021. "Vehicle routing problem with zone-based pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    14. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    15. Rahma Lahyani & Mahdi Khemakhem & Frédéric Semet, 2017. "A unified matheuristic for solving multi-constrained traveling salesman problems with profits," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 393-422, September.
    16. Mei, Yi & Salim, Flora D. & Li, Xiaodong, 2016. "Efficient meta-heuristics for the Multi-Objective Time-Dependent Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 443-457.
    17. Freeman, Nickolas K. & Keskin, Burcu B. & Çapar, İbrahim, 2018. "Attractive orienteering problem with proximity and timing interactions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 354-370.
    18. Verbeeck, C. & Sörensen, K. & Aghezzaf, E.-H. & Vansteenwegen, P., 2014. "A fast solution method for the time-dependent orienteering problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 419-432.
    19. Jesse Pietz & Johannes O. Royset, 2013. "Generalized orienteering problem with resource dependent rewards," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 294-312, June.
    20. Evers, L. & Glorie, K.M. & van der Ster, S. & Barros, A.I. & Monsuur, H., 2012. "The Orienteering Problem under Uncertainty Stochastic Programming and Robust Optimization compared," Econometric Institute Research Papers EI 2012-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00261-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.