IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v28y2025i1d10.1007_s11203-025-09324-x.html
   My bibliography  Save this article

Non parametric estimation of the jump coefficient of a diffusion with jumps

Author

Listed:
  • Émeline Schmisser

    (Université de Lille)

Abstract

In this article, we consider a jump diffusion process $$(X_t)_{t \ge 0}$$ ( X t ) t ≥ 0 with drift function b, diffusion coefficient $$\sigma $$ σ and jump coefficient $$\xi $$ ξ . This process is supposed to be ergodic, exponentially $$\beta $$ β -mixing and stationary. It is observed at discrete times $$t=0,\Delta ,\ldots ,n\Delta $$ t = 0 , Δ , … , n Δ . The sampling interval $$\Delta $$ Δ tends to 0 and the time interval $$n\Delta $$ n Δ tends to infinity. We construct a robust, adaptive non-parametric estimator of the function $$\xi ^4$$ ξ 4 thanks to a penalized least-square approach. We provide bounds of the empirical and $$L^2$$ L 2 -risk of our estimator.

Suggested Citation

  • Émeline Schmisser, 2025. "Non parametric estimation of the jump coefficient of a diffusion with jumps," Statistical Inference for Stochastic Processes, Springer, vol. 28(1), pages 1-32, April.
  • Handle: RePEc:spr:sistpr:v:28:y:2025:i:1:d:10.1007_s11203-025-09324-x
    DOI: 10.1007/s11203-025-09324-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-025-09324-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-025-09324-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yasutaka Shimizu, 2006. "M-Estimation for Discretely Observed Ergodic Diffusion Processes with Infinitely Many Jumps," Statistical Inference for Stochastic Processes, Springer, vol. 9(2), pages 179-225, July.
    2. Mancini, Cecilia & Renò, Roberto, 2011. "Threshold estimation of Markov models with jumps and interest rate modeling," Journal of Econometrics, Elsevier, vol. 160(1), pages 77-92, January.
    3. Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
    4. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    5. Bandi, Federico M. & Nguyen, Thong H., 2003. "On the functional estimation of jump-diffusion models," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 293-328.
    6. Yasutaka Shimizu & Nakahiro Yoshida, 2006. "Estimation of Parameters for Diffusion Processes with Jumps from Discrete Observations," Statistical Inference for Stochastic Processes, Springer, vol. 9(3), pages 227-277, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakobsen, Nina Munkholt & Sørensen, Michael, 2019. "Estimating functions for jump–diffusions," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3282-3318.
    2. Cecilia Mancini & Vanessa Mattiussi & Roberto Renò, 2015. "Spot volatility estimation using delta sequences," Finance and Stochastics, Springer, vol. 19(2), pages 261-293, April.
    3. I. Gaia Becheri & Feike C. Drost & Bas J.M. Werker, 2016. "Asymptotic Inference for Jump Diffusions with State-Dependent Intensity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 520-542, June.
    4. Kim, Jihyun & Park, Joon & Wang, Bin, 2020. "Estimation of Volatility Functions in Jump Diffusions Using Truncated Bipower Increments," TSE Working Papers 20-1096, Toulouse School of Economics (TSE).
    5. Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
    6. Liu, Qiang & Liu, Yiqi & Liu, Zhi, 2018. "Estimating spot volatility in the presence of infinite variation jumps," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1958-1987.
    7. Shimizu, Yasutaka, 2009. "Functional estimation for Lvy measures of semimartingales with Poissonian jumps," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1073-1092, July.
    8. Schmisser, Émeline, 2019. "Non parametric estimation of the diffusion coefficients of a diffusion with jumps," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5364-5405.
    9. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    10. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    11. Hacène Djellout & Hui Jiang, 2018. "Large Deviations Of The Threshold Estimator Of Integrated (Co-)Volatility Vector In The Presence Of Jumps," Post-Print hal-01147189, HAL.
    12. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    13. Chiara Amorino & Arnaud Gloter, 2020. "Contrast function estimation for the drift parameter of ergodic jump diffusion process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 279-346, June.
    14. Yuping Song & Min Zhu & Jiawei Qiu, 2024. "Asymptotic Normality of Bias Reduction Estimation for Jump Intensity Function in Financial Markets," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 558-583, July.
    15. Song, Yuping & Lin, Zhengyan, 2013. "Empirical likelihood inference for the second-order jump-diffusion model," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 184-195.
    16. T. Ogihara & N. Yoshida, 2011. "Quasi-likelihood analysis for the stochastic differential equation with jumps," Statistical Inference for Stochastic Processes, Springer, vol. 14(3), pages 189-229, October.
    17. Yasutaka Shimizu, 2017. "Threshold Estimation for Stochastic Processes with Small Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 951-988, December.
    18. Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
    19. Corradi, Valentina & Silvapulle, Mervyn J. & Swanson, Norman R., 2018. "Testing for jumps and jump intensity path dependence," Journal of Econometrics, Elsevier, vol. 204(2), pages 248-267.
    20. Yiying Cheng & Yaozhong Hu & Hongwei Long, 2020. "Generalized moment estimators for $$\alpha $$α-stable Ornstein–Uhlenbeck motions from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 53-81, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:28:y:2025:i:1:d:10.1007_s11203-025-09324-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.