IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i2d10.1007_s11192-023-04713-6.html
   My bibliography  Save this article

Inventor bibliographic-patent-coupling analysis and inventor-patent-classification-coupling analysis: a comparative analysis based on NPE

Author

Listed:
  • Song Yanhui

    (Hangzhou Dianzi University)

  • Lei Lixin

    (Hangzhou Dianzi University)

Abstract

The patent literature is an important scientific and technological literature, which integrates technical information, market information, and legal information. It is of great significance to expand the bibliometric methods to the measurement of patent literature. This paper takes 4624 NPE (Non Practicing Entities) patents as samples and establishes an inventor coupling network based on two types of feature items, patent literature and Derwent classification codes. We have explored the technical structure of NPE patents. Through centrality analysis, correlation analysis, factor analysis, and visualization analysis, the two coupling analysis methods of Inventor Bibliographic-Patent-Coupling (IBPCA) and Inventor Patent Classification-Coupling (IPPCA) are compared. It is found that inventor centrality analysis, frequency correlation analysis, and cosine similarity measurement all show that IBPCA is correlated with IPPCA; The core technical topics of NPE patents discovered by IBPCA and IPCCA are digital computers, digital telecommunication transmission, and data storage and transmission. However, the two methods differ in factor models fitting analysis and intellectual structure detection. The factor fitting analysis of IPPCA is better than that of IBCCA; IBPCA can detect more topics than IPCCA, and has more advantages in small-scale topic detection; IPCCA is more sensitive to traditional and more stable research topics. Therefore, The combination of the two methods for intellectual structure detection and analysis will be more effective, then more comprehensive and specific conclusions will be obtained.

Suggested Citation

  • Song Yanhui & Lei Lixin, 2024. "Inventor bibliographic-patent-coupling analysis and inventor-patent-classification-coupling analysis: a comparative analysis based on NPE," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(2), pages 745-765, February.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:2:d:10.1007_s11192-023-04713-6
    DOI: 10.1007/s11192-023-04713-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-023-04713-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-023-04713-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howard D. White, 2003. "Author cocitation analysis and Pearson's r," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(13), pages 1250-1259, November.
    2. Sridhar P. Nerur & Abdul A. Rasheed & Vivek Natarajan, 2008. "The intellectual structure of the strategic management field: an author co‐citation analysis," Strategic Management Journal, Wiley Blackwell, vol. 29(3), pages 319-336, March.
    3. Bonino, Dario & Ciaramella, Alberto & Corno, Fulvio, 2010. "Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics," World Patent Information, Elsevier, vol. 32(1), pages 30-38, March.
    4. Tae-Young Park & Hyungjoo Lim & Ilyong Ji, 2018. "Identifying potential users of technology for technology transfer using patent citation analysis: a case analysis of a Korean research institute," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1541-1558, September.
    5. Chen, Ssu-Han & Huang, Mu-Hsuan & Chen, Dar-Zen & Lin, Siou-Zih, 2012. "Detecting the temporal gaps of technology fronts: A case study of smart grid field," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1705-1719.
    6. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    7. Andrew Rodriguez & Byunghoon Kim & Mehmet Turkoz & Jae-Min Lee & Byoung-Youl Coh & Myong K. Jeong, 2015. "New multi-stage similarity measure for calculation of pairwise patent similarity in a patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 565-581, May.
    8. Yoon, Byungun & Magee, Christopher L., 2018. "Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 105-117.
    9. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    10. Zhang, Yi & Shang, Lining & Huang, Lu & Porter, Alan L. & Zhang, Guangquan & Lu, Jie & Zhu, Donghua, 2016. "A hybrid similarity measure method for patent portfolio analysis," Journal of Informetrics, Elsevier, vol. 10(4), pages 1108-1130.
    11. von Wartburg, Iwan & Teichert, Thorsten & Rost, Katja, 2005. "Inventive progress measured by multi-stage patent citation analysis," Research Policy, Elsevier, vol. 34(10), pages 1591-1607, December.
    12. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    13. Kuan, Chung-Huei & Huang, Mu-Hsuan & Chen, Dar-Zen, 2018. "Missing links: Timing characteristics and their implications for capturing contemporaneous technological developments," Journal of Informetrics, Elsevier, vol. 12(1), pages 259-270.
    14. Katherine W. McCain, 1990. "Mapping authors in intellectual space: A technical overview," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 433-443, September.
    15. Ahmad Barirani & Bruno Agard & Catherine Beaudry, 2013. "Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1111-1136, March.
    16. Kim, Gabjo & Bae, Jinwoo, 2017. "A novel approach to forecast promising technology through patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 228-237.
    17. Chang, Shu-Hao & Fan, Chin-Yuan, 2016. "Identification of the technology life cycle of telematics: A patent-based analytical perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 1-10.
    18. Dangzhi Zhao & Andreas Strotmann, 2008. "Information science during the first decade of the web: An enriched author cocitation analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(6), pages 916-937, April.
    19. Dangzhi Zhao & Andreas Strotmann, 2014. "The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 995-1006, May.
    20. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    21. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    22. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    23. Dangzhi Zhao & Andreas Strotmann, 2008. "Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic‐coupling analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(13), pages 2070-2086, November.
    24. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    25. Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2019. "Bibliographically coupled patents: Their temporal pattern and combined relevance," Journal of Informetrics, Elsevier, vol. 13(4).
    26. Tsung-Ming Hsiao & Kuang-hua Chen, 2020. "The dynamics of research subfields for library and information science: an investigation based on word bibliographic coupling," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 717-737, October.
    27. Keun Lee & Jongho Lee, 2020. "National innovation systems, economic complexity, and economic growth: country panel analysis using the US patent data," Journal of Evolutionary Economics, Springer, vol. 30(4), pages 897-928, September.
    28. Osmo Kuusi & Martin Meyer, 2007. "Anticipating technological breakthroughs: Using bibliographic coupling to explore the nanotubes paradigm," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 759-777, March.
    29. Noh, Heeyong & Song, Young-Keun & Lee, Sungjoo, 2016. "Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations," Telecommunications Policy, Elsevier, vol. 40(10), pages 956-970.
    30. Wenyuan Liu & Andrea Nanetti & Siew Ann Cheong, 2017. "Knowledge evolution in physics research: An analysis of bibliographic coupling networks," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
    31. Pénin, Julien, 2012. "Strategic uses of patents in markets for technology: A story of fabless firms, brokers and trolls," Journal of Economic Behavior & Organization, Elsevier, vol. 84(2), pages 633-641.
    32. Howard D. White & Belver C. Griffith, 1981. "Author cocitation: A literature measure of intellectual structure," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 32(3), pages 163-171, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song Yanhui & Wu Lijuan & Qiu Junping, 2021. "A comparative study of first and all-author bibliographic coupling analysis based on Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1125-1147, February.
    2. Yun, Jinhyuk & Ahn, Sejung & Lee, June Young, 2020. "Return to basics: Clustering of scientific literature using structural information," Journal of Informetrics, Elsevier, vol. 14(4).
    3. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    4. Tsung-Ming Hsiao & Kuang-hua Chen, 2020. "The dynamics of research subfields for library and information science: an investigation based on word bibliographic coupling," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 717-737, October.
    5. Prathap, Gangan & Ujum, Ephrance Abu & Kumar, Sameer & Ratnavelu, Kuru, 2021. "Scoring the resourcefulness of researchers using bibliographic coupling patterns," Journal of Informetrics, Elsevier, vol. 15(3).
    6. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    7. Wang, Feifei & Jia, Chenran & Wang, Xiaohan & Liu, Junwan & Xu, Shuo & Liu, Yang & Yang, Chenyuyan, 2019. "Exploring all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 13(3), pages 856-873.
    8. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    9. Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2019. "Bibliographically coupled patents: Their temporal pattern and combined relevance," Journal of Informetrics, Elsevier, vol. 13(4).
    10. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    11. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    12. Mingchun Cao & Ilan Alon, 2020. "Intellectual Structure of the Belt and Road Initiative Research: A Scientometric Analysis and Suggestions for a Future Research Agenda," Sustainability, MDPI, vol. 12(17), pages 1-40, August.
    13. Jan Lampe & Priscilla Sarai Kraft & Andreas Bausch, 2020. "Mapping the Field of Research on Entrepreneurial Organizations (1937–2016): A Bibliometric Analysis and Research Agenda," Entrepreneurship Theory and Practice, , vol. 44(4), pages 784-816, July.
    14. Myriam Ertz & Sébastien Leblanc-Proulx, 2019. "Review of a proposed methodology for bibliometric and visualization analyses for organizations: application to the collaboration economy," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(2), pages 84-93, June.
    15. Kraker, Peter & Schlögl, Christian & Jack, Kris & Lindstaedt, Stefanie, 2015. "Visualization of co-readership patterns from an online reference management system," Journal of Informetrics, Elsevier, vol. 9(1), pages 169-182.
    16. Bo Liu & Wei Song & Qian Sun, 2022. "Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-30, November.
    17. Chenglong Zheng & Roy Kouwenberg, 2019. "A Bibliometric Review of Global Research on Corporate Governance and Board Attributes," Sustainability, MDPI, vol. 11(12), pages 1-25, June.
    18. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    19. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    20. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:2:d:10.1007_s11192-023-04713-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.