IDEAS home Printed from https://ideas.repec.org/a/spr/reaccs/v18y2013i3d10.1007_s11142-013-9231-1.html
   My bibliography  Save this article

The supraview of return predictive signals

Author

Listed:
  • Jeremiah Green

    (The Pennsylvania State University)

  • John R. M. Hand

    (University of North Carolina–Chapel Hill)

  • X. Frank Zhang

    (Yale University)

Abstract

This study seeks to inform investment academics and practitioners by describing and analyzing the population of return predictive signals (RPS) publicly identified over the 40-year period 1970–2010. Our supraview brings to light new facts about RPS, including that more than 330 signals have been reported; the properties of newly discovered RPS are stable over time; and RPS with higher mean returns have larger standard deviations of returns and also higher Sharpe ratios. Using a sample of 39 readily programmed RPS, we estimate that the average cross-correlation of RPS returns is close to zero and that the average correlation between RPS returns and the market is reliably negative. Abstracting from implementation costs, this implies that portfolios of RPS either on their own or in combination with the market will tend to have quite high Sharpe ratios. For academics who seek to document that they have found a genuinely new RPS, we show that the probability that a randomly chosen RPS has a positive alpha after being orthogonalized against five (25) other randomly chosen RPS is 62 % (32 %), suggesting that the returns of a potentially new RPS need to be orthogonalized against the returns of some but not all pre-existing RPS. Finally, we posit that our findings pose a challenge to investment academics in that they imply that either US stock markets are pervasively inefficient, or there exist a much larger number of rationally priced sources of risk in equity returns than previously thought.

Suggested Citation

  • Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2013. "The supraview of return predictive signals," Review of Accounting Studies, Springer, vol. 18(3), pages 692-730, September.
  • Handle: RePEc:spr:reaccs:v:18:y:2013:i:3:d:10.1007_s11142-013-9231-1
    DOI: 10.1007/s11142-013-9231-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11142-013-9231-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11142-013-9231-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Karl B. Diether & Christopher J. Malloy & Anna Scherbina, 2002. "Differences of Opinion and the Cross Section of Stock Returns," Journal of Finance, American Finance Association, vol. 57(5), pages 2113-2141, October.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    4. Richardson, Scott A. & Sloan, Richard G. & Soliman, Mark T. & Tuna, Irem, 2005. "Accrual reliability, earnings persistence and stock prices," Journal of Accounting and Economics, Elsevier, vol. 39(3), pages 437-485, September.
    5. Schwert, G. William, 2003. "Anomalies and market efficiency," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 15, pages 939-974, Elsevier.
    6. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    7. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    8. Avanidhar Subrahmanyam, 2010. "The Cross†Section of Expected Stock Returns: What Have We Learnt from the Past Twenty†Five Years of Research?," European Financial Management, European Financial Management Association, vol. 16(1), pages 27-42, January.
    9. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    10. Jeffrey Pontiff & Artemiza Woodgate, 2008. "Share Issuance and Cross‐sectional Returns," Journal of Finance, American Finance Association, vol. 63(2), pages 921-945, April.
    11. Basu, S, 1977. "Investment Performance of Common Stocks in Relation to Their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis," Journal of Finance, American Finance Association, vol. 32(3), pages 663-682, June.
    12. Lev, B & Ohlson, Ja, 1982. "Market-Based Empirical-Research In Accounting - A Review, Interpretation, And Extension," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 20, pages 249-322.
    13. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    14. Chordia, Tarun & Subrahmanyam, Avanidhar & Anshuman, V. Ravi, 2001. "Trading activity and expected stock returns," Journal of Financial Economics, Elsevier, vol. 59(1), pages 3-32, January.
    15. Kothari, S. P., 2001. "Capital markets research in accounting," Journal of Accounting and Economics, Elsevier, vol. 31(1-3), pages 105-231, September.
    16. Balakrishnan, Karthik & Bartov, Eli & Faurel, Lucile, 2010. "Post loss/profit announcement drift," Journal of Accounting and Economics, Elsevier, vol. 50(1), pages 20-41, May.
    17. Jacob Thomas & Frank X. Zhang, 2011. "Tax Expense Momentum," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 49(3), pages 791-821, June.
    18. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    19. Kewei Hou & David T. Robinson, 2006. "Industry Concentration and Average Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1927-1956, August.
    20. Huang, Alan Guoming, 2009. "The cross section of cashflow volatility and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 409-429, June.
    21. Richardson, Scott & Tuna, Irem & Wysocki, Peter, 2010. "Accounting anomalies and fundamental analysis: A review of recent research advances," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 410-454, December.
    22. Rendleman, Richard Jr. & Jones, Charles P. & Latane, Henry A., 1982. "Empirical anomalies based on unexpected earnings and the importance of risk adjustments," Journal of Financial Economics, Elsevier, vol. 10(3), pages 269-287, November.
    23. Datar, Vinay T. & Y. Naik, Narayan & Radcliffe, Robert, 1998. "Liquidity and stock returns: An alternative test," Journal of Financial Markets, Elsevier, vol. 1(2), pages 203-219, August.
    24. Jeremiah Green & John R. M. Hand & Mark T. Soliman, 2011. "Going, Going, Gone? The Apparent Demise of the Accruals Anomaly," Management Science, INFORMS, vol. 57(5), pages 797-816, May.
    25. Jacob K. Thomas & Huai Zhang, 2002. "Inventory Changes and Future Returns," Review of Accounting Studies, Springer, vol. 7(2), pages 163-187, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuanpu Lin & Guoman She & Aaron Yoon & Haoran Zhu, 2025. "Shareholder value implications of supply chain ESG: evidence from negative incidents," Review of Accounting Studies, Springer, vol. 30(3), pages 2185-2217, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tran, Vu Le, 2023. "Sentiment and covariance characteristics," International Review of Financial Analysis, Elsevier, vol. 86(C).
    2. Hou, Kewei & Xue, Chen & Zhang, Lu, 2017. "Replicating Anomalies," Working Paper Series 2017-10, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    3. Geertsema, Paul & Lu, Helen, 2020. "The correlation structure of anomaly strategies," Journal of Banking & Finance, Elsevier, vol. 119(C).
    4. Weichuan Deng & Pawel Polak & Abolfazl Safikhani & Ronakdilip Shah, 2023. "A Unified Framework for Fast Large-Scale Portfolio Optimization," Papers 2303.12751, arXiv.org, revised Nov 2023.
    5. Wang, Feifei & Yan, Xuemin Sterling, 2021. "Downside risk and the performance of volatility-managed portfolios," Journal of Banking & Finance, Elsevier, vol. 131(C).
    6. Cederburg, Scott & O’Doherty, Michael S. & Wang, Feifei & Yan, Xuemin (Sterling), 2020. "On the performance of volatility-managed portfolios," Journal of Financial Economics, Elsevier, vol. 138(1), pages 95-117.
    7. De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
    8. Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    9. Hediger, Simon & Michel, Loris & Näf, Jeffrey, 2022. "On the use of random forest for two-sample testing," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    10. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    11. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    12. Jacobs, Heiko, 2015. "What explains the dynamics of 100 anomalies?," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 65-85.
    13. Andrew Y. Chen & Tom Zimmermann, 2022. "Open Source Cross-Sectional Asset Pricing," Critical Finance Review, now publishers, vol. 11(2), pages 207-264, May.
    14. Tobek, Ondrej & Hronec, Martin, 2021. "Does it pay to follow anomalies research? Machine learning approach with international evidence," Journal of Financial Markets, Elsevier, vol. 56(C).
    15. Kewei Hou & Haitao Mo & Chen Xue & Lu Zhang, 2019. "Which Factors?," Review of Finance, European Finance Association, vol. 23(1), pages 1-35.
    16. Olivier Ledoit & Michael Wolf & Zhao Zhao, 2016. "Efficient Sorting: A More Powerful Test for Cross-Sectional Anomalies," ECON - Working Papers 238, Department of Economics - University of Zurich, revised May 2018.
    17. Kristoffer Pons Bertelsen, 2022. "The Prior Adaptive Group Lasso and the Factor Zoo," CREATES Research Papers 2022-05, Department of Economics and Business Economics, Aarhus University.
    18. Gianluca De Nard & Simon Hediger & Markus Leippold, 2022. "Subsampled factor models for asset pricing: The rise of Vasa," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1217-1247, September.
    19. Kaplanski, Guy, 2023. "The race to exploit anomalies and the cost of slow trading," Journal of Financial Markets, Elsevier, vol. 62(C).
    20. Hoang, Khoa & Cannavan, Damien & Gaunt, Clive & Huang, Ronghong, 2019. "Is that factor just lucky? Australian evidence," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:reaccs:v:18:y:2013:i:3:d:10.1007_s11142-013-9231-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.