IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v59y2025i2d10.1007_s11135-025-02064-3.html
   My bibliography  Save this article

Exploring the predictors of the populist vote using random forests

Author

Listed:
  • Stefano Benati

    (Università degli Studi di Trento
    Università degli Studi di Trento)

  • Matteo Bon

    (Università degli Studi di Trento)

  • Filippo Nardi

    (Università degli Studi di Trento)

Abstract

In this paper, we use random forests to determine what individual attitudes and opinions are the best predictors of the vote for a populist party. We used data from the European Value Survey, Wave 7, and after coding European parties as populist or not, we carried out a preliminary analysis on two peculiar nations, France and Poland, highlighting the basic steps of a random forests application. The analysis reveals that populist voters have different attitudes. In Poland, the populist vote is mostly predicted by the adherence to religious and traditional values. In France, vote is mostly predicted by strong discontent on the actual practice of democracy. However, we show that predictions can be biased when imbalanced data are used, that is, data in which the minority class contains few observations. We discuss how to obtain a balanced dataset and we show that in this way the predictive power of the random forests is improved. Next, we extend the analysis of the populist vote to all the European nations available in the survey, to determine what are the most important predictors both at supranational and national level. The use of the random forest allows determining what are the most common global predictors, and the role of some local predictors as well.

Suggested Citation

  • Stefano Benati & Matteo Bon & Filippo Nardi, 2025. "Exploring the predictors of the populist vote using random forests," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(2), pages 1393-1426, April.
  • Handle: RePEc:spr:qualqt:v:59:y:2025:i:2:d:10.1007_s11135-025-02064-3
    DOI: 10.1007/s11135-025-02064-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-025-02064-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-025-02064-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hüseyin Çakal & Yasin Altınışık & Ömer Gökcekuş & Ertugrul Gazi Eraslan, 2022. "Why people vote for thin-centred ideology parties? A multi-level multi-country test of individual and aggregate level predictors," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-19, March.
    2. Marbach, Moritz, 2022. "Choosing Imputation Models," Political Analysis, Cambridge University Press, vol. 30(4), pages 597-605, October.
    3. Sidney Michelini & Barbora Šedová & Jacob Schewe & Katja Frieler, 2023. "Extreme weather impacts do not improve conflict predictions in Africa," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
    4. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    5. Zhaochen He & John Camobreco & Keith Perkins, 2022. "How he won: Using machine learning to understand Trump’s 2016 victory," Journal of Computational Social Science, Springer, vol. 5(1), pages 905-947, May.
    6. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    7. Muchlinski, David & Siroky, David & He, Jingrui & Kocher, Matthew, 2016. "Comparing Random Forest with Logistic Regression for Predicting Class-Imbalanced Civil War Onset Data," Political Analysis, Cambridge University Press, vol. 24(1), pages 87-103, January.
    8. Felix Ettensperger, 2020. "Comparing supervised learning algorithms and artificial neural networks for conflict prediction: performance and applicability of deep learning in the field," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 567-601, April.
    9. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    10. Davide Castelvecchi, 2016. "Can we open the black box of AI?," Nature, Nature, vol. 538(7623), pages 20-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    5. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    6. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    7. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    8. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    9. Karim Zkik & Anass Sebbar & Oumaima Fadi & Sachin Kamble & Amine Belhadi, 2024. "Securing blockchain-based crowdfunding platforms: an integrated graph neural networks and machine learning approach," Electronic Commerce Research, Springer, vol. 24(1), pages 497-533, March.
    10. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    11. Yi Cao & Xue Li, 2022. "Multi-Model Attention Fusion Multilayer Perceptron Prediction Method for Subway OD Passenger Flow under COVID-19," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    12. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    13. Jonas Botz & Diego Valderrama & Jannis Guski & Holger Fröhlich, 2024. "A dynamic ensemble model for short-term forecasting in pandemic situations," PLOS Global Public Health, Public Library of Science, vol. 4(8), pages 1-18, August.
    14. Daniel Boller & Michael Lechner & Gabriel Okasa, 2025. "The effect of sport in online dating: evidence from causal machine learning," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-13, December.
    15. Zhenchao Zhang & Weixin Luan & Chuang Tian & Min Su, 2025. "Impact of Urban Expansion on School Quality in Compulsory Education: A Spatio-Temporal Study of Dalian, China," Land, MDPI, vol. 14(2), pages 1-20, January.
    16. Jorge Antunes & Peter Wanke & Thiago Fonseca & Yong Tan, 2023. "Do ESG Risk Scores Influence Financial Distress? Evidence from a Dynamic NDEA Approach," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    17. Lyudmyla Kirichenko & Tamara Radivilova & Vitalii Bulakh, 2018. "Machine Learning in Classification Time Series with Fractal Properties," Data, MDPI, vol. 4(1), pages 1-13, December.
    18. Cini, Federico & Ferrari, Annalisa, 2025. "Towards the estimation of ESG ratings: A machine learning approach using balance sheet ratios," Research in International Business and Finance, Elsevier, vol. 73(PB).
    19. Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    20. Jianghong Xu & Wei Lu & Weixin Wang, 2024. "From “fragile smallholders” to “resilient smallholders”: measuring rural household resilience in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:59:y:2025:i:2:d:10.1007_s11135-025-02064-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.