IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Bayesian informative priors with Yang and Land’s hierarchical age–period–cohort model

Listed author(s):
  • Andrew Bell

    ()

  • Kelvyn Jones
Registered author(s):

    Previous work (Bell and Jones, Demogr Res 2013a ; Bell and Jones, Soc Sci Med 2013c ; Luo and Hodges, Under review 2013 ) has shown that, when there are trends in either the period or cohort residuals of Yang and Land’s Hierarchical age–period–cohort (APC) model (Yang and Land, Sociol Methodol 36:75–97 2006 ; Yang and Land, APC analysis: new models, methods, and empirical applications. CRC Press, Boca Raton 2013 ), the model can incorrectly estimate those trends, because of the well-known APC identification problem. Here we consider modelling possibilities when the age effect is known, allowing any period or cohort trends to be estimated. In particular, we suggest the application of informative priors, in a Bayesian framework, to the age trend, and we use a variety of simulated but realistic datasets to explicate this. Similarly, an informative prior could be applied to an estimated period or cohort trend, allowing the other two APC trends to be estimated. We show that a very strong informative prior is required for this purpose. As such, models of this kind can be fitted but are only useful when very strong evidence of the age trend (for example physiological evidence regarding health) is available. Alternatively, a variety of strong priors can be tested and the most plausible solution argued for on the basis of theory. Copyright Springer Science+Business Media Dordrecht 2015

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s11135-013-9985-3
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Quality & Quantity.

    Volume (Year): 49 (2015)
    Issue (Month): 1 (January)
    Pages: 255-266

    as
    in new window

    Handle: RePEc:spr:qualqt:v:49:y:2015:i:1:p:255-266
    DOI: 10.1007/s11135-013-9985-3
    Contact details of provider: Web page: http://www.springer.com

    Order Information: Web: http://www.springer.com/economics/journal/11135

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
    2. Reither, Eric N. & Hauser, Robert M. & Yang, Yang, 2009. "Do birth cohorts matter? Age-period-cohort analyses of the obesity epidemic in the United States," Social Science & Medicine, Elsevier, vol. 69(10), pages 1439-1448, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:49:y:2015:i:1:p:255-266. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.