IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v73y2008i3p343-364.html
   My bibliography  Save this article

A Robust Bayesian Approach for Structural Equation Models with Missing Data

Author

Listed:
  • Sik-Yum Lee

    ()

  • Ye-Mao Xia

Abstract

No abstract is available for this item.

Suggested Citation

  • Sik-Yum Lee & Ye-Mao Xia, 2008. "A Robust Bayesian Approach for Structural Equation Models with Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 343-364, September.
  • Handle: RePEc:spr:psycho:v:73:y:2008:i:3:p:343-364 DOI: 10.1007/s11336-008-9060-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-008-9060-5
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2004. "A new joint model for longitudinal and survival data with a cure fraction," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 18-34, October.
    2. Asim Ansari & Kamel Jedidi, 2000. "Bayesian factor analysis for multilevel binary observations," Psychometrika, Springer;The Psychometric Society, vol. 65(4), pages 475-496, December.
    3. Sik-Yum Lee & Xin-Yuan Song, 2003. "Model comparison of nonlinear structural equation models with fixed covariates," Psychometrika, Springer;The Psychometric Society, pages 27-47.
    4. Richard Scheines & Herbert Hoijtink & Anne Boomsma, 1999. "Bayesian estimation and testing of structural equation models," Psychometrika, Springer;The Psychometric Society, pages 37-52.
    5. Liu, C., 1995. "Missing Data Imputation Using the Multivariate t Distribution," Journal of Multivariate Analysis, Elsevier, vol. 53(1), pages 139-158, April.
    6. D. B. Dunson, 2000. "Bayesian latent variable models for clustered mixed outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 355-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
    2. Ke-Hai Yuan & Zhiyong Zhang, 2012. "Robust Structural Equation Modeling with Missing Data and Auxiliary Variables," Psychometrika, Springer;The Psychometric Society, pages 803-826.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:73:y:2008:i:3:p:343-364. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.