IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v65y2000i3p377-390.html
   My bibliography  Save this article

Minimax d-optimal designs for item response theory models

Author

Listed:
  • Martijn Berger
  • C. Joy King
  • Weng Wong

Abstract

No abstract is available for this item.

Suggested Citation

  • Martijn Berger & C. Joy King & Weng Wong, 2000. "Minimax d-optimal designs for item response theory models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 377-390, September.
  • Handle: RePEc:spr:psycho:v:65:y:2000:i:3:p:377-390
    DOI: 10.1007/BF02296152
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02296152
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02296152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    2. Martijn Berger, 1992. "Sequential sampling designs for the two-parameter item response theory model," Psychometrika, Springer;The Psychometric Society, vol. 57(4), pages 521-538, December.
    3. David Thissen & Howard Wainer, 1982. "Some standard errors in item response theory," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 397-412, December.
    4. R. Darrell Bock, 1972. "Estimating item parameters and latent ability when responses are scored in two or more nominal categories," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 29-51, March.
    5. T. Theunissen, 1985. "Binary programming and test design," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 411-420, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmood Ul Hassan & Frank Miller, 2019. "Optimal Item Calibration for Computerized Achievement Tests," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1101-1128, December.
    2. Ulrike Graßhoff & Heinz Holling & Rainer Schwabe, 2012. "Optimal Designs for the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 710-723, October.
    3. Ul Hassan, Mahmood & Miller, Frank, 2021. "An exchange algorithm for optimal calibration of items in computerized achievement tests," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    4. Yinhong He & Ping Chen, 2020. "Optimal Online Calibration Designs for Item Replenishment in Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 35-55, March.
    5. Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.
    6. Wim Linden & Hao Ren, 2015. "Optimal Bayesian Adaptive Design for Test-Item Calibration," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 263-288, June.
    7. Masoudi, Ehsan & Holling, Heinz & Wong, Weng Kee, 2017. "Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 330-345.
    8. Yuan-chin Chang & Hung-Yi Lu, 2010. "Online Calibration Via Variable Length Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 140-157, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henk Kelderman & Carl Rijkes, 1994. "Loglinear multidimensional IRT models for polytomously scored items," Psychometrika, Springer;The Psychometric Society, vol. 59(2), pages 149-176, June.
    2. repec:jss:jstsof:35:i12 is not listed on IDEAS
    3. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    4. David Magis, 2015. "A Note on the Equivalence Between Observed and Expected Information Functions With Polytomous IRT Models," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 96-105, February.
    5. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    6. Leonardo Grilli & Carla Rampichini, 2019. "Discussion of ‘The class of CUB models: statistical foundations, inferential issues and empirical evidence’ by Domenico Piccolo and Rosaria Simone," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 459-463, September.
    7. Michal Abrahamowicz & James Ramsay, 1992. "Multicategorical spline model for item response theory," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 5-27, March.
    8. David Magis, 2015. "A Note on Weighted Likelihood and Jeffreys Modal Estimation of Proficiency Levels in Polytomous Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 200-204, March.
    9. Timothy R. Johnson & Daniel M. Bolt, 2010. "On the Use of Factor-Analytic Multinomial Logit Item Response Models to Account for Individual Differences in Response Style," Journal of Educational and Behavioral Statistics, , vol. 35(1), pages 92-114, February.
    10. David Magis & Norman Verhelst, 2017. "On the Finiteness of the Weighted Likelihood Estimator of Ability," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 637-647, September.
    11. Gunter Maris & Timo Bechger & Ernesto Martin, 2015. "A Gibbs Sampler for the (Extended) Marginal Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 859-879, December.
    12. Javier Revuelta, 2005. "An Item Response Model for Nominal Data Based on the Rising Selection Ratios Criterion," Psychometrika, Springer;The Psychometric Society, vol. 70(2), pages 305-324, June.
    13. Gerhard Tutz & Moritz Berger, 2016. "Response Styles in Rating Scales," Journal of Educational and Behavioral Statistics, , vol. 41(3), pages 239-268, June.
    14. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    15. Maydeu Olivares, Alberto & D'Zurilla, Thomas J. & Morera, Osvaldo, 1996. "Assessing measurement invariance in questionnaires within latent trait models using item response theory," DES - Working Papers. Statistics and Econometrics. WS 10456, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. De Boeck, Paul & Partchev, Ivailo, 2012. "IRTrees: Tree-Based Item Response Models of the GLMM Family," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(c01).
    17. Geofferey Masters, 1985. "A comparison of latent trait and latent class analyses of Likert-type data," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 69-82, March.
    18. Daphna Harel & Russell J. Steele, 2018. "An Information Matrix Test for the Collapsing of Categories Under the Partial Credit Model," Journal of Educational and Behavioral Statistics, , vol. 43(6), pages 721-750, December.
    19. Singh, Jagdip, 2004. "Tackling measurement problems with Item Response Theory: Principles, characteristics, and assessment, with an illustrative example," Journal of Business Research, Elsevier, vol. 57(2), pages 184-208, February.
    20. Silvana Bortolotti & Rafael Tezza & Dalton Andrade & Antonio Bornia & Afonso Sousa Júnior, 2013. "Relevance and advantages of using the item response theory," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2341-2360, June.
    21. Javier Revuelta, 2008. "The generalized Logit-Linear Item Response Model for Binary-Designed Items," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 385-405, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:65:y:2000:i:3:p:377-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.