IDEAS home Printed from https://ideas.repec.org/a/spr/pharmo/v5y2021i3d10.1007_s41669-021-00263-w.html
   My bibliography  Save this article

Onwards and Upwards: A Systematic Survey of Economic Evaluation Methods in Oncology

Author

Listed:
  • Graeme Ball

    (McMaster University)

  • Mitch Levine

    (McMaster University
    The Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton)

  • Lehana Thabane

    (McMaster University
    The Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton)

  • Jean-Eric Tarride

    (McMaster University
    The Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton
    McMaster Chair in Health Technology Management, McMaster University)

Abstract

Introduction The type of methods used in economic evaluations of health technology can lead to results that may influence decisions. Despite the potential impact on decision making, there is very little documentation of methods used in economic evaluation in oncology pertaining to key assumptions and extrapolation methods of survival benefits, especially in terms of survival analysis techniques and methods for extrapolation. Objectives The primary objectives of this study were to identify, examine, and describe the methods used in economic evaluations in oncology over a 10-year period, while secondary objectives included examining the use of identified methods across different geographic regions. Methods A systematic search of the published oncology literature was conducted to identify economic evaluations of advanced or metastatic cancers published between 2010 and 2019 using the PUBMED, Ovid MEDLINE, and EMBASE databases. A random sample was taken, and information on type of study, data source, modeling techniques, and survival analysis methods were abstracted and descriptively summarized. Results A total of 8481 abstracts were identified and 76 economic evaluations were abstracted and assessed. Most identified studies were from North America (38%), East Asia (21%), continental Europe (18%), or the UK (16%), and most commonly focused on lung cancer (18%), colorectal cancer (16%), or breast cancer (13%). A large majority of studies were based on data from randomized controlled trials (82%), utilized a cost-utility approach (82%), and took a public healthcare system perspective (83%). Common model structures included Markov (49%) and partitioned survival (17%). Fitted parametric curves were the most commonly used extrapolation method (89%) for overall survival and most often utilized the Weibull distribution (64%). Secondary assessments showed modest regional variation in the use of identified methods, including the use of fitted parametric curves, testing of the proportional hazards assumption, and validation of results. Conclusion A majority of papers in the study sample reported basic characteristics of study type, data source used, modeling techniques, and utilization of survival analysis methods. However, greater detail in reporting extrapolation methods, statistical analyses, and validation of results could be potential improvements, especially across regions, in order to support greater consistency in decision making. Future research could document the diffusion of novel modeling techniques into economic evaluation.

Suggested Citation

  • Graeme Ball & Mitch Levine & Lehana Thabane & Jean-Eric Tarride, 2021. "Onwards and Upwards: A Systematic Survey of Economic Evaluation Methods in Oncology," PharmacoEconomics - Open, Springer, vol. 5(3), pages 397-410, September.
  • Handle: RePEc:spr:pharmo:v:5:y:2021:i:3:d:10.1007_s41669-021-00263-w
    DOI: 10.1007/s41669-021-00263-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41669-021-00263-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s41669-021-00263-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    2. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    3. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    4. Andrea Marcellusi & Raffaella Viti & Loreta A. Kondili & Stefano Rosato & Stefano Vella & Francesco Saverio Mennini, 2019. "Economic Consequences of Investing in Anti-HCV Antiviral Treatment from the Italian NHS Perspective: A Real-World-Based Analysis of PITER Data," PharmacoEconomics, Springer, vol. 37(2), pages 255-266, February.
    5. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    6. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    7. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    8. Jorge Luis García & James J. Heckman, 2021. "Early childhood education and life‐cycle health," Health Economics, John Wiley & Sons, Ltd., vol. 30(S1), pages 119-141, November.
    9. Tushar Srivastava & Nicholas R. Latimer & Paul Tappenden, 2021. "Estimation of Transition Probabilities for State-Transition Models: A Review of NICE Appraisals," PharmacoEconomics, Springer, vol. 39(8), pages 869-878, August.
    10. Eleanor Heather & Katherine Payne & Mark Harrison & Deborah Symmons, 2014. "Including Adverse Drug Events in Economic Evaluations of Anti-Tumour Necrosis Factor-α Drugs for Adult Rheumatoid Arthritis: A Systematic Review of Economic Decision Analytic Models," PharmacoEconomics, Springer, vol. 32(2), pages 109-134, February.
    11. Manuel Gomes & Robert Aldridge & Peter Wylie & James Bell & Owen Epstein, 2013. "Cost-Effectiveness Analysis of 3-D Computerized Tomography Colonography Versus Optical Colonoscopy for Imaging Symptomatic Gastroenterology Patients," Applied Health Economics and Health Policy, Springer, vol. 11(2), pages 107-117, April.
    12. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    13. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    14. Martin Hoyle, 2008. "Future Drug Prices and Cost-Effectiveness Analyses," PharmacoEconomics, Springer, vol. 26(7), pages 589-602, July.
    15. Aris Angelis & Huseyin Naci & Allan Hackshaw, 2020. "Recalibrating Health Technology Assessment Methods for Cell and Gene Therapies," PharmacoEconomics, Springer, vol. 38(12), pages 1297-1308, December.
    16. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    17. Neily Zakiyah & Antoinette D I van Asselt & Frank Roijmans & Maarten J Postma, 2016. "Economic Evaluation of Family Planning Interventions in Low and Middle Income Countries; A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.
    18. Billingsley Kaambwa & Julie Ratcliffe, 2018. "Predicting EuroQoL 5 Dimensions 5 Levels (EQ-5D-5L) Utilities from Older People’s Quality of Life Brief Questionnaire (OPQoL-Brief) Scores," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 11(1), pages 39-54, February.
    19. Billingsley Kaambwa & Gang Chen & Julie Ratcliffe & Angelo Iezzi & Aimee Maxwell & Jeff Richardson, 2017. "Mapping Between the Sydney Asthma Quality of Life Questionnaire (AQLQ-S) and Five Multi-Attribute Utility Instruments (MAUIs)," PharmacoEconomics, Springer, vol. 35(1), pages 111-124, January.
    20. Thananan Rattanachotphanit & Chulaporn Limwattananon & Onanong Waleekhachonloet & Phumtham Limwattananon & Kittisak Sawanyawisuth, 2019. "Cost-Effectiveness Analysis of Direct-Acting Oral Anticoagulants for Stroke Prevention in Thai Patients with Non-Valvular Atrial Fibrillation and a High Risk of Bleeding," PharmacoEconomics, Springer, vol. 37(2), pages 279-289, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharmo:v:5:y:2021:i:3:d:10.1007_s41669-021-00263-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.