IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v39y2021i9d10.1007_s40273-021-01037-2.html
   My bibliography  Save this article

A Net Benefit Approach for the Optimal Allocation of a COVID-19 Vaccine

Author

Listed:
  • Erin Kirwin

    (Institute of Health Economics
    University of Manchester)

  • Ellen Rafferty

    (Institute of Health Economics)

  • Kate Harback

    (Institute of Health Economics)

  • Jeff Round

    (Institute of Health Economics
    University of Alberta)

  • Christopher McCabe

    (Institute of Health Economics
    University of Alberta)

Abstract

Objective The objective of this study was to implement a model-based approach to identify the optimal allocation of a coronavirus disease 2019 (COVID-19) vaccine in the province of Alberta, Canada. Methods We developed an epidemiologic model to evaluate allocation strategies defined by age and risk target groups, coverage, effectiveness and cost of vaccine. The model simulated hypothetical immunisation scenarios within a dynamic context, capturing concurrent public health strategies and population behavioural changes. Results In a scenario with 80% vaccine effectiveness, 40% population coverage and prioritisation of those over the age of 60 years at high risk of poor outcomes, active cases are reduced by 17% and net monetary benefit increased by $263 million dollars, relative to no vaccine. Concurrent implementation of policies such as school closure and senior contact reductions have similar impacts on incremental net monetary benefit ($352 vs $292 million, respectively) when there is no prioritisation given to any age or risk group. When older age groups are given priority, the relative benefit of school closures is much larger ($214 vs $118 million). Results demonstrate that the rank ordering of different prioritisation options varies by prioritisation criteria, vaccine effectiveness and coverage, and concurrently implemented policies. Conclusions Our results have three implications: (i) optimal vaccine allocation will depend on the public health policies in place at the time of allocation and the impact of those policies on population behaviour; (ii) outcomes of vaccine allocation policies can be greatly supported with interventions targeting contact reduction in critical sub-populations; and (iii) identification of the optimal strategy depends on which outcomes are prioritised.

Suggested Citation

  • Erin Kirwin & Ellen Rafferty & Kate Harback & Jeff Round & Christopher McCabe, 2021. "A Net Benefit Approach for the Optimal Allocation of a COVID-19 Vaccine," PharmacoEconomics, Springer, vol. 39(9), pages 1059-1073, September.
  • Handle: RePEc:spr:pharme:v:39:y:2021:i:9:d:10.1007_s40273-021-01037-2
    DOI: 10.1007/s40273-021-01037-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-021-01037-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-021-01037-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aaron A. Stinnett & John Mullahy, 1998. "Net Health Benefits: A New Framework for the Analysis of Uncertainty in Cost-Effectiveness Analysis," NBER Technical Working Papers 0227, National Bureau of Economic Research, Inc.
    2. Stephen Poteet & Benjamin M. Craig, 2021. "QALYs for COVID-19: A Comparison of US EQ-5D-5L Value Sets," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 14(3), pages 339-345, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zéphirin Nganmeni & Roland Pongou & Bertrand Tchantcho & Jean‐Baptiste Tondji, 2022. "Vaccine and inclusion," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 24(5), pages 1101-1123, October.
      • Zéphirin Nganmeni & Roland Pongou & Bertrand Tchantcho & Jean-Baptiste Tondji, 2022. "Vaccine and Inclusion," Working Papers 2202E Classification-C62,, University of Ottawa, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Antonio Espinoza & Andrea Manca & Karl Claxton & Mark Sculpher, 2018. "Social value and individual choice: The value of a choice‐based decision‐making process in a collectively funded health system," Health Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 28-40, February.
    2. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    3. Basu, Anirban & Jena, Anupam B. & Philipson, Tomas J., 2011. "The impact of comparative effectiveness research on health and health care spending," Journal of Health Economics, Elsevier, vol. 30(4), pages 695-706, July.
    4. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    5. Simon Eckermann & Tim Coelli, 2008. "Including quality attributes in a model of health care efficiency: A net benefit approach," CEPA Working Papers Series WP032008, School of Economics, University of Queensland, Australia.
    6. Frank G. Sandmann & Julie V. Robotham & Sarah R. Deeny & W. John Edmunds & Mark Jit, 2018. "Estimating the opportunity costs of bed‐days," Health Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 592-605, March.
    7. Clarke, Philip M. & Hayes, Alison J., 2009. "Measuring achievement: Changes in risk factors for cardiovascular disease in Australia," Social Science & Medicine, Elsevier, vol. 68(3), pages 552-561, February.
    8. Niklas Zethraeus & Magnus Johannesson & Bengt Jönsson & Mickael Löthgren & Magnus Tambour, 2003. "Advantages of Using the Net-Benefit Approach for Analysing Uncertainty in Economic Evaluation Studies," PharmacoEconomics, Springer, vol. 21(1), pages 39-48, January.
    9. Moreno, Elías & Girón, F.J. & Vázquez-Polo, F.J. & Negrín, M.A., 2012. "Optimal healthcare decisions: The importance of the covariates in cost–effectiveness analysis," European Journal of Operational Research, Elsevier, vol. 218(2), pages 512-522.
    10. Jordan Amdahl & Jose Diaz & Arati Sharma & Jinhee Park & David Chandiwana & Thomas E Delea, 2017. "Cost-effectiveness of pazopanib versus sunitinib for metastatic renal cell carcinoma in the United Kingdom," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-18, June.
    11. Emma McIntosh, 2006. "Using Discrete Choice Experiments within a Cost-Benefit Analysis Framework," PharmacoEconomics, Springer, vol. 24(9), pages 855-868, September.
    12. Martin Henriksson & Fredrik Lundgren & Per Carlsson, 2006. "Informing the efficient use of health care and health care research resources ‐ the case of screening for abdominal aortic aneurysm in Sweden," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1311-1322, December.
    13. Jing Voon Chen & Julia L. Higle & Michael Hintlian, 2018. "A systematic approach for examining the impact of calibration uncertainty in disease modeling," Computational Management Science, Springer, vol. 15(3), pages 541-561, October.
    14. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    15. Claxton, Karl & Asaria, Miqdad & Chansa, Collins & Jamison, Julian & Lomas, James & Ochalek, Jessica & Paulden, Mike, 2019. "Accounting for timing when assessing health-related policies," LSE Research Online Documents on Economics 100038, London School of Economics and Political Science, LSE Library.
    16. Marta O. Soares & Simon Walker & Stephen J. Palmer & Mark J. Sculpher, 2018. "Establishing the Value of Diagnostic and Prognostic Tests in Health Technology Assessment," Medical Decision Making, , vol. 38(4), pages 495-508, May.
    17. Helen Dakin & Sarah Wordsworth, 2013. "Cost‐Minimisation Analysis Versus Cost‐Effectiveness Analysis, Revisited," Health Economics, John Wiley & Sons, Ltd., vol. 22(1), pages 22-34, January.
    18. David Brain & Ruth Tulleners & Xing Lee & Qinglu Cheng & Nicholas Graves & Rosana Pacella, 2019. "Cost-effectiveness analysis of an innovative model of care for chronic wounds patients," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    19. Claire McKenna & Karl Claxton, 2011. "Addressing Adoption and Research Design Decisions Simultaneously," Medical Decision Making, , vol. 31(6), pages 853-865, November.
    20. Fabienne Abadie & Christian Boehler, 2015. "Monitoring and Assessment Framework for the European Innovation Partnership on Active and Healthy Ageing (MAFEIP) - Conceptual description of the Monitoring and Assessment Framework for the EIP on AHA," JRC Research Reports JRC96205, Joint Research Centre.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:39:y:2021:i:9:d:10.1007_s40273-021-01037-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.