IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v57y2020i4d10.1007_s12597-020-00463-8.html
   My bibliography  Save this article

Two multi-start heuristics for the k-traveling salesman problem

Author

Listed:
  • Venkatesh Pandiri

    (University of Hyderabad)

  • Alok Singh

    (University of Hyderabad)

Abstract

This paper is concerned with the k-traveling salesman problem (k-TSP), which is a variation of widely studied traveling salesman problem (TSP). Given a set of n cities including a home city and a fixed value k such that $$1

Suggested Citation

  • Venkatesh Pandiri & Alok Singh, 2020. "Two multi-start heuristics for the k-traveling salesman problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1164-1204, December.
  • Handle: RePEc:spr:opsear:v:57:y:2020:i:4:d:10.1007_s12597-020-00463-8
    DOI: 10.1007/s12597-020-00463-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-020-00463-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-020-00463-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    2. Mladenović, Nenad & Urošević, Dragan & Hanafi, Saı¨d & Ilić, Aleksandar, 2012. "A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 220(1), pages 270-285.
    3. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    4. G Kendall & J Li, 2013. "Competitive travelling salesmen problem: A hyper-heuristic approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(2), pages 208-216, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Granado, Igor & Hernando, Leticia & Uriondo, Zigor & Fernandes-Salvador, Jose A., 2024. "A fishing route optimization decision support system: The case of the tuna purse seiner," European Journal of Operational Research, Elsevier, vol. 312(2), pages 718-732.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
    2. Huber, Sandra & Geiger, Martin Josef, 2017. "Order matters – A Variable Neighborhood Search for the Swap-Body Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 263(2), pages 419-445.
    3. Chen, Yujie & Cowling, Peter & Polack, Fiona & Remde, Stephen & Mourdjis, Philip, 2017. "Dynamic optimisation of preventative and corrective maintenance schedules for a large scale urban drainage system," European Journal of Operational Research, Elsevier, vol. 257(2), pages 494-510.
    4. Todosijević, Raca & Benmansour, Rachid & Hanafi, Saïd & Mladenović, Nenad & Artiba, Abdelhakim, 2016. "Nested general variable neighborhood search for the periodic maintenance problem," European Journal of Operational Research, Elsevier, vol. 252(2), pages 385-396.
    5. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    6. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
    7. Cai, Yutong & Ong, Ghim Ping & Meng, Qiang, 2022. "Dynamic bicycle relocation problem with broken bicycles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    8. W. B. Yates & E. C. Keedwell, 2019. "An analysis of heuristic subsequences for offline hyper-heuristic learning," Journal of Heuristics, Springer, vol. 25(3), pages 399-430, June.
    9. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    10. Gilberto F. Sousa Filho & Teobaldo L. Bulhões Júnior & Lucidio A. F. Cabral & Luiz Satoru Ochi & Fábio Protti, 2017. "New heuristics for the Bicluster Editing Problem," Annals of Operations Research, Springer, vol. 258(2), pages 781-814, November.
    11. Surafel Luleseged Tilahun & Mohamed A. Tawhid, 2019. "Swarm hyperheuristic framework," Journal of Heuristics, Springer, vol. 25(4), pages 809-836, October.
    12. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    13. Almoustafa, Samira & Hanafi, Said & Mladenović, Nenad, 2013. "New exact method for large asymmetric distance-constrained vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 226(3), pages 386-394.
    14. Liu, Ling & Martín Barragán, Belén & Prieto Fernández, Francisco Javier, 2016. "A Partial parametric path algorithm for multiclass classification," DES - Working Papers. Statistics and Econometrics. WS 22390, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. H. Asefi & S. Lim & M. Maghrebi & S. Shahparvari, 2019. "Mathematical modelling and heuristic approaches to the location-routing problem of a cost-effective integrated solid waste management," Annals of Operations Research, Springer, vol. 273(1), pages 75-110, February.
    16. Li, Wenwen & Özcan, Ender & John, Robert, 2017. "Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation," Renewable Energy, Elsevier, vol. 105(C), pages 473-482.
    17. Jari Kyngäs & Kimmo Nurmi & Nico Kyngäs & George Lilley & Thea Salter & Dries Goossens, 2017. "Scheduling the Australian Football League," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 973-982, August.
    18. Sara Ceschia & Rosita Guido & Andrea Schaerf, 2020. "Solving the static INRC-II nurse rostering problem by simulated annealing based on large neighborhoods," Annals of Operations Research, Springer, vol. 288(1), pages 95-113, May.
    19. Lei, Chao & Ouyang, Yanfeng, 2018. "Continuous approximation for demand balancing in solving large-scale one-commodity pickup and delivery problems," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 90-109.
    20. Zhaowei Miao & Feng Yang & Ke Fu & Dongsheng Xu, 2012. "Transshipment service through crossdocks with both soft and hard time windows," Annals of Operations Research, Springer, vol. 192(1), pages 21-47, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:57:y:2020:i:4:d:10.1007_s12597-020-00463-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.