IDEAS home Printed from https://ideas.repec.org/a/spr/opmare/v16y2023i2d10.1007_s12063-022-00342-z.html
   My bibliography  Save this article

Operational planning for public holidays in grocery retailing - managing the grocery retail rush

Author

Listed:
  • Elisabeth Obermair

    (Department of Logistics Management, Hochschule Geisenheim University)

  • Andreas Holzapfel

    (Department of Logistics Management, Hochschule Geisenheim University)

  • Heinrich Kuhn

    (Chair of Supply Chain Management & Operations, Catholic University Eichstätt-Ingolstadt)

Abstract

Public holiday weeks cause specific challenges in grocery retailing as sales are raising and working days for logistics processes are reduced. The paper analyzes the operational planning challenges and solutions for demand planning and disposition as well as for warehouse and transportation management of grocery retailers in public holiday seasons. A total of 22 top managers representing 20 sales lines of 17 of the top 30 grocery retailers in Germany participated in the study. Semi-structured, face-to-face interviews with logistics managers were conducted and analyzed. Uncertainties and missing resources can be identified as the two main challenges of public holiday seasons in grocery retailing. Retailers implement numerous measures that can be summarized in three categories, i.e., the adjustment of workload profiles, the adaptation of resources and modifying processes. Literature has so far considered public holidays only to a limited extent, e.g., as a parameter in forecasting models or for the application of marketing instruments. This study is the first developing a framework and providing insights into operational planning in grocery retailing.

Suggested Citation

  • Elisabeth Obermair & Andreas Holzapfel & Heinrich Kuhn, 2023. "Operational planning for public holidays in grocery retailing - managing the grocery retail rush," Operations Management Research, Springer, vol. 16(2), pages 931-948, June.
  • Handle: RePEc:spr:opmare:v:16:y:2023:i:2:d:10.1007_s12063-022-00342-z
    DOI: 10.1007/s12063-022-00342-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12063-022-00342-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12063-022-00342-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehrenthal, J.C.F. & Honhon, D. & Van Woensel, T., 2014. "Demand seasonality in retail inventory management," European Journal of Operational Research, Elsevier, vol. 238(2), pages 527-539.
    2. Karel H. van Donselaar & Vishal Gaur & Tom van Woensel & Rob A. C. M. Broekmeulen & Jan C. Fransoo, 2010. "Ordering Behavior in Retail Stores and Implications for Automated Replenishment," Management Science, INFORMS, vol. 56(5), pages 766-784, May.
    3. Sara Martins & Pedro Amorim & Bernardo Almada-Lobo, 2018. "Delivery mode planning for distribution to brick-and-mortar retail stores: discussion and literature review," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 785-812, December.
    4. Holzapfel, Andreas & Kuhn, Heinrich & Sternbeck, Michael G., 2018. "Product allocation to different types of distribution center in retail logistics networks," European Journal of Operational Research, Elsevier, vol. 264(3), pages 948-966.
    5. Gur Ali, Ozden & Pinar, Efe, 2016. "Multi-period-ahead forecasting with residual extrapolation and information sharing — Utilizing a multitude of retail series," International Journal of Forecasting, Elsevier, vol. 32(2), pages 502-517.
    6. Cesar Augusto Henao & Juan Carlos Munoz & Juan Carlos Ferrer, 2015. "The impact of multi-skilling on personnel scheduling in the service sector: a retail industry case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(12), pages 1949-1959, December.
    7. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    8. Fildes, Robert & Kolassa, Stephan & Ma, Shaohui, 2022. "Post-script—Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1319-1324.
    9. Petersen, Charles G. & Aase, Gerald, 2004. "A comparison of picking, storage, and routing policies in manual order picking," International Journal of Production Economics, Elsevier, vol. 92(1), pages 11-19, November.
    10. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    11. Teun van Gils & Katrien Ramaekers & An Caris & Mario Cools, 2017. "The use of time series forecasting in zone order picking systems to predict order pickers’ workload," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6380-6393, November.
    12. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    13. Chun (Martin) Qiu & Wenqing Zhang, 2016. "Managing long queues for holiday sales shopping," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(1), pages 52-65, February.
    14. Piecyk, Maja I. & McKinnon, Alan C., 2010. "Forecasting the carbon footprint of road freight transport in 2020," International Journal of Production Economics, Elsevier, vol. 128(1), pages 31-42, November.
    15. Susanne Wruck & Iris F.A. Vis & Jaap Boter, 2017. "Risk control for staff planning in e-commerce warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6453-6469, November.
    16. Frank, Markus & Ostermeier, Manuel & Holzapfel, Andreas & Hübner, Alexander & Kuhn, Heinrich, 2021. "Optimizing routing and delivery patterns with multi-compartment vehicles," European Journal of Operational Research, Elsevier, vol. 293(2), pages 495-510.
    17. Klibi, Walid & Martel, Alain & Guitouni, Adel, 2010. "The design of robust value-creating supply chain networks: A critical review," European Journal of Operational Research, Elsevier, vol. 203(2), pages 283-293, June.
    18. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    19. Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
    20. Holzapfel, Andreas & Hübner, Alexander & Kuhn, Heinrich & Sternbeck, Michael G., 2016. "Delivery pattern and transportation planning in grocery retailing," European Journal of Operational Research, Elsevier, vol. 252(1), pages 54-68.
    21. Dekker, Mark & van Donselaar, Karel & Ouwehand, Pim, 2004. "How to use aggregation and combined forecasting to improve seasonal demand forecasts," International Journal of Production Economics, Elsevier, vol. 90(2), pages 151-167, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lam, H.Y. & Ho, G.T.S. & Mo, Daniel Y. & Tang, Valerie, 2023. "Responsive pick face replenishment strategy for stock allocation to fulfil e-commerce order," International Journal of Production Economics, Elsevier, vol. 264(C).
    2. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    3. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    4. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    5. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    7. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    8. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    9. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    10. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris, 2019. "Formulating and solving the integrated batching, routing, and picker scheduling problem in a real-life spare parts warehouse," European Journal of Operational Research, Elsevier, vol. 277(3), pages 814-830.
    11. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris & de Koster, René B.M., 2019. "Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 47-73.
    12. Özgün Turgut & Florian Taube & Stefan Minner, 2018. "Data-driven retail inventory management with backroom effect," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 945-968, October.
    13. van der Gaast, Jelmer Pier & Weidinger, Felix, 2022. "A deep learning approach for the selection of an order picking system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 530-543.
    14. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    15. Anderson Rogério Faia Pinto & Marcelo Seido Nagano, 2020. "Genetic algorithms applied to integration and optimization of billing and picking processes," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 641-659, March.
    16. Parikh, Pratik J. & Meller, Russell D., 2010. "A travel-time model for a person-onboard order picking system," European Journal of Operational Research, Elsevier, vol. 200(2), pages 385-394, January.
    17. Ene, Seval & Küçükoğlu, İlker & Aksoy, Aslı & Öztürk, Nursel, 2016. "A genetic algorithm for minimizing energy consumption in warehouses," Energy, Elsevier, vol. 114(C), pages 973-980.
    18. Bouchery, Yann & Ghaffari, Asma & Jemai, Zied & Tan, Tarkan, 2017. "Impact of coordination on costs and carbon emissions for a two-echelon serial economic order quantity problem," European Journal of Operational Research, Elsevier, vol. 260(2), pages 520-533.
    19. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    20. K. L. Choy & G. T. S. Ho & C. K. H. Lee, 2017. "A RFID-based storage assignment system for enhancing the efficiency of order picking," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 111-129, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:16:y:2023:i:2:d:10.1007_s12063-022-00342-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.