IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i4d10.1007_s12351-021-00685-8.html
   My bibliography  Save this article

Hesitant intuitionistic fuzzy algorithm for multiobjective optimization problem

Author

Listed:
  • Shailendra Kumar Bharati

    (Government Polytechnic Chunar)

Abstract

Every real-life optimization problem with uncertainty and hesitation can not be with a single objective, and consequently, a class of multiobjective linear optimization problems (MOLOP) appears in the literature. Further, the experts assign values of uncertain parameters, and the expert’s opinions about the parameters are conflicting in nature. There are concerning methods based on fuzzy sets, or their other versions are available in the literature that only covers partial uncertainty and hesitation, but the hesitant intuitionistic fuzzy sets provides a collective understanding of the real-life MOLOP under uncertainty and hesitation, and it also reflects better practical aspects of decision-making of MOLOP. In this context, the paper defines the hesitant fuzzy membership function and nonmembership function to tackle the uncertainty and hesitation of the parameters. Here, a new solution called hesitant intuitionistic fuzzy Pareto optimal solution is defined, and some theorems are stated and proved. For the decision-making of MOLOP, we develop an iterative method, and an illustrative example shows the superiority of the proposed method. And lastly, the calculated results are compared with some popular methods.

Suggested Citation

  • Shailendra Kumar Bharati, 2022. "Hesitant intuitionistic fuzzy algorithm for multiobjective optimization problem," Operational Research, Springer, vol. 22(4), pages 3521-3547, September.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:4:d:10.1007_s12351-021-00685-8
    DOI: 10.1007/s12351-021-00685-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-021-00685-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-021-00685-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shailendra Kumar Bharati, 2022. "A New Interval-Valued Hesitant Fuzzy-Based Optimization Method," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 469-494, July.
    2. P. Senthil Kumar, 2018. "Linear Programming Approach for Solving Balanced and Unbalanced Intuitionistic Fuzzy Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 9(2), pages 73-100, April.
    3. Zhiming Zhang, 2013. "Interval-Valued Intuitionistic Hesitant Fuzzy Aggregation Operators and Their Application in Group Decision-Making," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-33, August.
    4. P. Senthil Kumar, 2020. "Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 189-222, February.
    5. S. K. Bharati & S. R. Singh, 2018. "A New Interval-Valued Intuitionistic Fuzzy Numbers: Ranking Methodology and Application," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 363-381, November.
    6. Stanley Zionts & Jyrki Wallenius, 1976. "An Interactive Programming Method for Solving the Multiple Criteria Problem," Management Science, INFORMS, vol. 22(6), pages 652-663, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Senthil Kumar, 2019. "PSK Method for Solving Mixed and Type-4 Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 10(2), pages 20-53, April.
    2. P. Senthil Kumar, 2020. "Developing a New Approach to Solve Solid Assignment Problems Under Intuitionistic Fuzzy Environment," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 9(1), pages 1-34, January.
    3. P. Senthil Kumar, 2019. "Intuitionistic fuzzy solid assignment problems: a software-based approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 661-675, August.
    4. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    5. Dheeraj Kumar Joshi & Ismat Beg & Sanjay Kumar, 2018. "Hesitant Probabilistic Fuzzy Linguistic Sets with Applications in Multi-Criteria Group Decision Making Problems," Mathematics, MDPI, vol. 6(4), pages 1-20, March.
    6. Mateos, A. & Jimenez, A. & Rios-Insua, S., 2006. "Monte Carlo simulation techniques for group decision making with incomplete information," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1842-1864, November.
    7. Torres-Rojo, J. M., 2001. "Risk management in the design of a feeding ration: a portfolio theory approach," Agricultural Systems, Elsevier, vol. 68(1), pages 1-20, April.
    8. Dimitris Bertsimas & Allison O'Hair, 2013. "Learning Preferences Under Noise and Loss Aversion: An Optimization Approach," Operations Research, INFORMS, vol. 61(5), pages 1190-1199, October.
    9. Li Cheng & Liu Conglin, 2023. "Game analysis and pricing strategy of duopoly airlines based on service," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(3), pages 1103-1124, June.
    10. Nowak, Maciej, 2007. "Aspiration level approach in stochastic MCDM problems," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1626-1640, March.
    11. Navindran Davendralingam & Daniel. A. DeLaurentis, 2015. "A Robust Portfolio Optimization Approach to System of System Architectures," Systems Engineering, John Wiley & Sons, vol. 18(3), pages 269-283, May.
    12. Andonegi, Aitor & Garmendia, Eneko & Aldezabal, Arantza, 2021. "Social multi-criteria evaluation for managing biodiversity conservation conflicts," Land Use Policy, Elsevier, vol. 109(C).
    13. Tavana, Madjid & Ebrahimnejad, Ali & Santos-Arteaga, Francisco J. & Mansourzadeh, Seyed Mehdi & Matin, Reza Kazemi, 2018. "A hybrid DEA-MOLP model for public school assessment and closure decision in the City of Philadelphia," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 70-89.
    14. Han, Qingye & Zhu, Yuming & Ke, Ginger Y. & Hipel, Keith W., 2018. "An ordinal classification of brownfield remediation projects in China for the allocation of government funding," Land Use Policy, Elsevier, vol. 77(C), pages 220-230.
    15. Quariguasi Frota Neto, J. & Walther, G. & Bloemhof, J. & van Nunen, J.A.E.E. & Spengler, T., 2009. "A methodology for assessing eco-efficiency in logistics networks," European Journal of Operational Research, Elsevier, vol. 193(3), pages 670-682, March.
    16. Rajshekhar G. Javalgi & Hemant K. Jain, 1988. "Integrating multiple criteria decision making models into the decision support system framework for marketing decisions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 575-596, December.
    17. Behnam Malakooti, 2015. "Double Helix Value Functions, Ordinal/Cardinal Approach, Additive Utility Functions, Multiple Criteria, Decision Paradigm, Process, and Types (Z Theory I)," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1353-1400, November.
    18. Gass, Saul I. & Roy, Pallabi Guha, 2003. "The compromise hypersphere for multiobjective linear programming," European Journal of Operational Research, Elsevier, vol. 144(3), pages 459-479, February.
    19. Charles, V. & Udhayakumar, A. & Rhymend Uthariaraj, V., 2010. "An approach to find redundant objective function(s) and redundant constraint(s) in multi-objective nonlinear stochastic fractional programming problems," European Journal of Operational Research, Elsevier, vol. 201(2), pages 390-398, March.
    20. Nasim Nasrabadi & Akram Dehnokhalaji & Pekka Korhonen & Jyrki Wallenius, 2019. "Using convex preference cones in multiple criteria decision making and related fields," Journal of Business Economics, Springer, vol. 89(6), pages 699-717, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:4:d:10.1007_s12351-021-00685-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.