IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v94y2018i1d10.1007_s11069-018-3373-1.html
   My bibliography  Save this article

An agent-based evacuation model for the 2011 Brisbane City-scale riverine flood

Author

Listed:
  • Xuefen Liu

    (University of New South Wales)

  • Samsung Lim

    (University of New South Wales)

Abstract

In this study, an agent-based model is proposed in order to provide new insights into the policy analysis and strategy assessment of city-scale evacuation management. The proposed model is suitable for assessment of the influence of different departure times and communications among peer evacuees on the number of residents at risk who arrive at official shelters. A case study is applied to build a simulation model for the coastal city of Brisbane in Australia. The Brisbane River catchment experiences regular flooding almost every year; the second severest flood since the twentieth century occurred in 2011. During that event, over 15,000 properties were inundated and around 3600 households evacuated in metropolitan Brisbane alone. Making use of high-performance computing clusters, the evacuation simulation was coupled with results from a validated hydrodynamic model to test a variety of escaping scenarios based on the 2011 flood situation. This case study demonstrates the proposed model’s capacity to represent the dynamic evacuation process and also shows that the model is able to help develop flood emergency plans and evaluate response measures through exploring key elements in a range of scenarios.

Suggested Citation

  • Xuefen Liu & Samsung Lim, 2018. "An agent-based evacuation model for the 2011 Brisbane City-scale riverine flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 53-70, October.
  • Handle: RePEc:spr:nathaz:v:94:y:2018:i:1:d:10.1007_s11069-018-3373-1
    DOI: 10.1007/s11069-018-3373-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3373-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3373-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Dawson & Roger Peppe & Miao Wang, 2011. "An agent-based model for risk-based flood incident management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 167-189, October.
    2. Jonkman, S.N. & Bockarjova, M. & Kok, M. & Bernardini, P., 2008. "Integrated hydrodynamic and economic modelling of flood damage in the Netherlands," Ecological Economics, Elsevier, vol. 66(1), pages 77-90, May.
    3. Pillac, Victor & Van Hentenryck, Pascal & Even, Caroline, 2016. "A conflict-based path-generation heuristic for evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 136-150.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Wang & Jing Huang & Huimin Wang & Jinle Kang & Weiwei Cao, 2020. "Analysis of Flood Evacuation Process in Vulnerable Community with Mutual Aid Mechanism: An Agent-Based Simulation Framework," IJERPH, MDPI, vol. 17(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grames, Johanna & Prskawetz, Alexia & Grass, Dieter & Viglione, Alberto & Blöschl, Günter, 2016. "Modeling the interaction between flooding events and economic growth," Ecological Economics, Elsevier, vol. 129(C), pages 193-209.
    2. Safarzyńska, Karolina & Brouwer, Roy & Hofkes, Marjan, 2013. "Evolutionary modelling of the macro-economic impacts of catastrophic flood events," Ecological Economics, Elsevier, vol. 88(C), pages 108-118.
    3. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    4. Sergii Skakun & Nataliia Kussul & Andrii Shelestov & Olga Kussul, 2014. "Flood Hazard and Flood Risk Assessment Using a Time Series of Satellite Images: A Case Study in Namibia," Risk Analysis, John Wiley & Sons, vol. 34(8), pages 1521-1537, August.
    5. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    6. Shangde Gao & Yan Wang, 2021. "Assessing the impact of geo-targeted warning messages on residents’ evacuation decisions before a hurricane using agent-based modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 123-146, May.
    7. Mohamed Kefi & Binaya Kumar Mishra & Yoshifumi Masago & Kensuke Fukushi, 2020. "Analysis of flood damage and influencing factors in urban catchments: case studies in Manila, Philippines, and Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2461-2487, December.
    8. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    9. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2016. "Flood damage assessment of an urban area in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1045-1055, September.
    10. Anna Rita Scorzini & Maurizio Leopardi, 2017. "River basin planning: from qualitative to quantitative flood risk assessment: the case of Abruzzo Region (central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 71-93, August.
    11. Balbi Stefano & Giupponi Carlo & Mojtahed Vahid & Olschewski Roland, 2015. "The Total Cost of Water-Related Disasters," Review of Economics, De Gruyter, vol. 66(2), pages 225-252, August.
    12. E. Perera & A. Hiroe & D. Shrestha & K. Fukami & D. Basnyat & S. Gautam & A. Hasegawa & T. Uenoyama & S. Tanaka, 2015. "Community-based flood damage assessment approach for lower West Rapti River basin in Nepal under the impact of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 669-699, January.
    13. Albert S. Chen & Michael J. Hammond & Slobodan Djordjević & David Butler & David M. Khan & William Veerbeek, 2016. "From hazard to impact: flood damage assessment tools for mega cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 857-890, June.
    14. Wu, Wen-Xiang & Huang, Hai-Jun, 2019. "A combined, adaptive strategy for managing evacuation routes," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 182-198.
    15. Yun Xing & Huili Chen & Qiuhua Liang & Xieyao Ma, 2022. "Improving the performance of city-scale hydrodynamic flood modelling through a GIS-based DEM correction method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2313-2335, July.
    16. Wim Kellens & Wouter Vanneuville & Els Verfaillie & Ellen Meire & Pieter Deckers & Philippe Maeyer, 2013. "Flood Risk Management in Flanders: Past Developments and Future Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3585-3606, August.
    17. Rosa Fernández Ropero & María Julia Flores & Rafael Rumí, 2022. "Bayesian Networks for Preprocessing Water Management Data," Mathematics, MDPI, vol. 10(10), pages 1-18, May.
    18. Zheng, Shiyuan & Wang, Kun & Li, Zhi-Chun & Fu, Xiaowen & Chan, Felix T.S., 2021. "Subsidy or minimum requirement? Regulation of port adaptation investment under disaster ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 457-481.
    19. Inmaculada Flores & M. Teresa Ortuño & Gregorio Tirado & Begoña Vitoriano, 2020. "Supported Evacuation for Disaster Relief through Lexicographic Goal Programming," Mathematics, MDPI, vol. 8(4), pages 1-20, April.
    20. Taberna, Alessandro & Filatova, Tatiana & Roventini, Andrea & Lamperti, Francesco, 2022. "Coping with increasing tides: Evolving agglomeration dynamics and technological change under exacerbating hazards," Ecological Economics, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:94:y:2018:i:1:d:10.1007_s11069-018-3373-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.