IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v80y2016i1p69-101.html
   My bibliography  Save this article

Generation of a national landslide hazard and risk map for the country of Georgia

Author

Listed:
  • George Gaprindashvili
  • Cees Westen

Abstract

Landslide risk assessment for large areas at a country level requires a different approach and data than what is standard practice at large scales. The main goal of this research was to design a methodology for a nationwide landslide risk assessment for Georgia taking into account the limitations in data availability and detail, which do not allow the use of physically based models or statistical methods. Given these limitations, we decided to generate a qualitative landslide risk index using spatial multicriteria evaluation (SMCE). An attempt was made to compile a national landslide inventory, using old and partly destroyed archives from the Soviet period, combined with information from annual field surveys. A web-based interface for the reporting of landslide events was developed to improve the updating of the inventory in future. Relevant factor maps were prepared for the entire country, partly based on remote sensing data. As the available landslide inventory was not sufficient to use statistical methods, the factor maps were weighted using the expert-based SMCE method, and the resulting susceptibility map was validated using the available landslide inventory. The inventory was also used to make an estimation of the spatial probability of landslide occurrence within the various susceptibility classes. The resulting map was used in combination with element-at-risk maps to calculate exposure maps and to make a tentative assessment of the expected landslide losses in a 50-year time period . Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • George Gaprindashvili & Cees Westen, 2016. "Generation of a national landslide hazard and risk map for the country of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 69-101, January.
  • Handle: RePEc:spr:nathaz:v:80:y:2016:i:1:p:69-101
    DOI: 10.1007/s11069-015-1958-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1958-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1958-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang Hong & Robert Adler & George Huffman, 2007. "Use of satellite remote sensing data in the mapping of global landslide susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 245-256, November.
    2. Chun Liu & Weiyue Li & Hangbin Wu & Ping Lu & Kai Sang & Weiwei Sun & Wen Chen & Yang Hong & Rongxing Li, 2013. "Susceptibility evaluation and mapping of China’s landslides based on multi-source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1477-1495, December.
    3. Dalia Kirschbaum & Robert Adler & Yang Hong & Stephanie Hill & Arthur Lerner-Lam, 2010. "A global landslide catalog for hazard applications: method, results, and limitations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 561-575, March.
    4. Vargas, Luis G., 1990. "An overview of the analytic hierarchy process and its applications," European Journal of Operational Research, Elsevier, vol. 48(1), pages 2-8, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoyuan Hong & Himan Shahabi & Ataollah Shirzadi & Wei Chen & Kamran Chapi & Baharin Bin Ahmad & Majid Shadman Roodposhti & Arastoo Yari Hesar & Yingying Tian & Dieu Tien Bui, 2019. "Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 173-212, March.
    2. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    3. Cuiying Zhou & Jinwu Ouyang & Zhen Liu & Lihai Zhang, 2022. "Early Risk Warning of Highway Soft Rock Slope Group Using Fuzzy-Based Machine Learning," Sustainability, MDPI, vol. 14(6), pages 1-28, March.
    4. Brander, L.M. & Tankha, S. & Sovann, C. & Sanadiradze, G. & Zazanashvili, N. & Kharazishvili, D. & Memiadze, N. & Osepashvili, I. & Beruchashvili, G. & Arobelidze, N., 2018. "Mapping the economic value of landslide regulation by forests," Ecosystem Services, Elsevier, vol. 32(PA), pages 101-109.
    5. Cahio Guimarães Seabra Eiras & Juliana Ribeiro Gonçalves de Souza & Renata Delicio Andrade de Freitas & César Falcão Barella & Tiago Martins Pereira, 2021. "Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1427-1442, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    2. Jeevan R. Kulkarni & Sneha S. Kulkarni & Mitali U. Inamdar & Nitin M. Tamhankar & Spandan B. Waghmare & Kiran R. Thombare & Paresh S. Mhetre & Tanuja Khatavkar & Yashodhan Panse & Amey Patwardhan & Yo, 2022. "“Satark”: Landslide Prediction System over Western Ghats of India," Land, MDPI, vol. 11(5), pages 1-23, May.
    3. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    4. Fhatuwani Sengani & François Mulenga, 2020. "Application of Limit Equilibrium Analysis and Numerical Modeling in a Case of Slope Instability," Sustainability, MDPI, vol. 12(21), pages 1-33, October.
    5. S. Modugno & S. C. M. Johnson & P. Borrelli & E. Alam & N. Bezak & H. Balzter, 2022. "Analysis of human exposure to landslides with a GIS multiscale approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 387-412, May.
    6. Weidong Wang & Jiaying Li & Xia Qu & Zheng Han & Pan Liu, 2019. "Prediction on landslide displacement using a new combination model: a case study of Qinglong landslide in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1121-1139, April.
    7. Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
    8. Hone-Jay Chu & Yi-Chin Chen, 2018. "Crowdsourcing photograph locations for debris flow hot spot mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1259-1276, February.
    9. Melachrinoudis, Emanuel & Min, Hokey, 2000. "The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach," European Journal of Operational Research, Elsevier, vol. 123(1), pages 1-15, May.
    10. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    11. Lucas, Rochelle Irene & Promentilla, Michael Angelo & Ubando, Aristotle & Tan, Raymond Girard & Aviso, Kathleen & Yu, Krista Danielle, 2017. "An AHP-based evaluation method for teacher training workshop on information and communication technology," Evaluation and Program Planning, Elsevier, vol. 63(C), pages 93-100.
    12. Muhammad Afzal & Abdul Rasheed & Khalil-Ur-Rehman, 2023. "Evaluation of Behavioral Biases and Investment Decision: An Evidence from Pakistan Stock Exchange (PSX)," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 12(4), pages 126-134.
    13. Mohammad Kanan & Ansa Rida Dilshad & Sadaf Zahoor & Amjad Hussain & Muhammad Salman Habib & Amjad Mehmood & Zaher Abusaq & Allam Hamdan & Jihad Asad, 2023. "An Empirical Study of the Implementation of an Integrated Ergo-Green-Lean Framework: A Case Study," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    14. Aleksandra Król-Badziak & Jerzy Kozyra & Stelios Rozakis, 2024. "Evaluation of Climate Suitability for Maize Production in Poland under Climate Change," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    15. Zsuzsanna Katalin Szabo & Zsombor Szádoczki & Sándor Bozóki & Gabriela C. Stănciulescu & Dalma Szabo, 2021. "An Analytic Hierarchy Process Approach for Prioritisation of Strategic Objectives of Sustainable Development," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    16. Asma M. A. Bahurmoz, 2003. "The Analytic Hierarchy Process at Dar Al-Hekma, Saudi Arabia," Interfaces, INFORMS, vol. 33(4), pages 70-78, August.
    17. Shuping Huang & Cecil Konijnendijk van den Bosch & Weicong Fu & Jinda Qi & Ziru Chen & Zhipeng Zhu & Jianwen Dong, 2018. "Does Adding Local Tree Elements into Dwellings Enhance Individuals’ Homesickness? Scenario-Visualisation for Developing Sustainable Rural Landscapes," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    18. Abbasi, H.N. & Zeeshan, Muhammad, 2023. "An integrated Geographic Information System and Analytical Hierarchy process based approach for site suitability analysis of on-grid hybrid concentrated solar-biomass powerplant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    19. Zonghu Liao & Yang Hong & Dalia Kirschbaum & Robert Adler & Jonathan Gourley & Rick Wooten, 2011. "Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 325-339, July.
    20. Paweł Cabała, 2010. "Using the analytic hierarchy process in evaluating decision alternatives," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 20(1), pages 5-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:1:p:69-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.