IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v79y2015i1p437-454.html
   My bibliography  Save this article

Changing properties of precipitation extremes in the urban areas, Yangtze River Delta, China, during 1957–2013

Author

Listed:
  • Longfei Han
  • Youpeng Xu
  • Guangbo Pan
  • Xiaojun Deng
  • Chunsheng Hu
  • Hongliang Xu
  • Hongyi Shi

Abstract

The Yangtze River Delta (YRD) is one of largest river deltas and metropolitan areas in the world with strong human interference, so it is vulnerable to extreme weather events. Based on daily precipitation dataset of 16 rain gauges in Yangtze River Delta and Mann–Kendall trend detection techniques, the trend in annual and seasonal precipitation extremes has been investigated in the period 1957–2013. Possible links between changes in extreme precipitation and monsoon indices have also been explored. The results show that: (1) the increasing trends of consecutive wet days, maximum daily precipitation, maximum 5-day precipitation and maximum precipitation amount in the past 57 years in YRD can be detected. Much attention should be paid to higher risk of flash flood in these areas, especially in big cities of Shanghai, Nanjing, Hangzhou and Ningbo. (2) Both precipitation days and amount of heavy events (defined as over 90th, 95th and 99th) exhibit overwhelming upward tendency in summer and winter throughout YRD. The summer is to meet with heavier precipitation events as result of larger increasing magnitude in heavy rain days and amounts in the past 57 years. So, high importance should be placed on the relief for flood in summer in the large cites. (3) There is an abrupt change point for extreme precipitation events, and increased annual total precipitation has impact on the upward tendency of heavy rainfall events in YRD on great scale. In addition, the significant correlations between indices (P90, P95, R90 and R95) and monsoon indices (East Asian Summer Monsoon Index and South Asia Summer Monsoon Index) indicate that extreme precipitation events are related to the EASMI and SASMI. Therefore, these properties of precipitation extremes are of great significance to the control of natural hazards in YRD with high degree of human activities and understanding the impact of climate change on hydrologic processes. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Longfei Han & Youpeng Xu & Guangbo Pan & Xiaojun Deng & Chunsheng Hu & Hongliang Xu & Hongyi Shi, 2015. "Changing properties of precipitation extremes in the urban areas, Yangtze River Delta, China, during 1957–2013," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 437-454, October.
  • Handle: RePEc:spr:nathaz:v:79:y:2015:i:1:p:437-454
    DOI: 10.1007/s11069-015-1850-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1850-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1850-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth Kunkel, 2003. "North American Trends in Extreme Precipitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(2), pages 291-305, June.
    2. P. C. D. Milly & R. T. Wetherald & K. A. Dunne & T. L. Delworth, 2002. "Increasing risk of great floods in a changing climate," Nature, Nature, vol. 415(6871), pages 514-517, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenlin Yuan & Lu Lu & Hanzhen Song & Xiang Zhang & Linjuan Xu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2022. "Study on the Early Warning for Flash Flood Based on Random Rainfall Pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1587-1609, March.
    2. Dimitrios Katsanos & Adrianos Retalis & Filippos Tymvios & Silas Michaelides, 2016. "Analysis of precipitation extremes based on satellite (CHIRPS) and in situ dataset over Cyprus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 53-63, October.
    3. Yi Ge & Wen Dou & Jianping Dai, 2017. "A New Approach to Identify Social Vulnerability to Climate Change in the Yangtze River Delta," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    4. Wenlin Yuan & Xinyu Tu & Chengguo Su & Meiqi Liu & Denghua Yan & Zening Wu, 2021. "Research on the Critical Rainfall of Flash Floods in Small Watersheds Based on the Design of Characteristic Rainfall Patterns," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3297-3319, August.
    5. Changjun Liu & Liang Guo & Lei Ye & Shunfu Zhang & Yanzeng Zhao & Tianyu Song, 2018. "A review of advances in China’s flash flood early-warning system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 619-634, June.
    6. Jian-Liang Deng & Shui-Long Shen & Ye-Shuang Xu, 2016. "Investigation into pluvial flooding hazards caused by heavy rain and protection measures in Shanghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1301-1320, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    2. Huang, Shengzhi & Huang, Qiang & Chang, Jianxia & Leng, Guoyong & Xing, Li, 2015. "The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 45-54.
    3. Berlemann, Michael, 2015. "Hurricane Risk, Happiness and Life Satisfaction. Some Empirical Evidence on the Indirect Effects of Natural Disasters," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113073, Verein für Socialpolitik / German Economic Association.
    4. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    5. Teodor Kitczak & Heidi Jänicke & Marek Bury & Ryszard Malinowski, 2021. "The Usefulness of Mixtures with Festulolium braunii for the Regeneration of Grassland under Progressive Climate Change," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    6. Linze Li & Chengsheng Jiang & Raghu Murtugudde & Xin-Zhong Liang & Amir Sapkota, 2021. "Global Population Exposed to Extreme Events in the 150 Most Populated Cities of the World: Implications for Public Health," IJERPH, MDPI, vol. 18(3), pages 1-11, February.
    7. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    8. Madhav L Khandekar, 2005. "Extreme Weather Trends Vs. Dangerous Climate Change: A Need for Critical Reassessment," Energy & Environment, , vol. 16(2), pages 327-331, March.
    9. Michael Bernardi & Christa Hainz & Paulina Maier & Maria Waldinger, 2023. "A “Green Revolution” for Sub-Saharan Africa? Challenges and Opportunities," EconPol Policy Brief 54, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    10. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    11. Mark D. Risser & William D. Collins & Michael F. Wehner & Travis A. O’Brien & Huanping Huang & Paul A. Ullrich, 2024. "Anthropogenic aerosols mask increases in US rainfall by greenhouse gases," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Pratyush Tripathy & Teja Malladi, 2022. "Global Flood Mapper: a novel Google Earth Engine application for rapid flood mapping using Sentinel-1 SAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1341-1363, November.
    13. Sechindra Vallury & Bryan Leonard, 2022. "Canals, climate, and corruption: The provisioning of public infrastructure under uncertainty," Economics and Politics, Wiley Blackwell, vol. 34(1), pages 221-252, March.
    14. Jiawei Zhou & Xiaohong Chen & Chuang Xu & Pan Wu, 2022. "Assessing Socioeconomic Drought Based on a Standardized Supply and Demand Water Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1937-1953, April.
    15. repec:fpr:2020cp:5(5 is not listed on IDEAS
    16. Jan Skála & Radim Vácha & Pavel Čupr, 2018. "Which Compounds Contribute Most to Elevated Soil Pollution and the Corresponding Health Risks in Floodplains in the Headwater Areas of the Central European Watershed?," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    17. David Ocio & Christian Stocker & Ángel Eraso & Arantza Martínez & José María Sanz Galdeano, 2016. "Towards a reliable and cost-efficient flood risk management: the case of the Basque Country (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 617-639, March.
    18. Yun Xing & Huili Chen & Qiuhua Liang & Xieyao Ma, 2022. "Improving the performance of city-scale hydrodynamic flood modelling through a GIS-based DEM correction method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2313-2335, July.
    19. David Marcolino Nielsen & Marcio Cataldi & André Luiz Belém & Ana Luiza Spadano Albuquerque, 2016. "Local indices for the South American monsoon system and its impacts on Southeast Brazilian precipitation patterns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 909-928, September.
    20. Leila M. V. Carvalho, 2020. "Assessing precipitation trends in the Americas with historical data: A review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    21. Andrew C. Ross & Raymond G. Najjar, 2019. "Evaluation of methods for selecting climate models to simulate future hydrological change," Climatic Change, Springer, vol. 157(3), pages 407-428, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:79:y:2015:i:1:p:437-454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.