IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i2p947-965.html
   My bibliography  Save this article

Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China

Author

Listed:
  • Enliang Guo
  • Jiquan Zhang
  • Xuehui Ren
  • Qi Zhang
  • Zhongyi Sun

Abstract

This study presents the methodology and procedure for risk assessment of flood disasters in central Liaoning Province, which was supported by geographical information systems (GIS) and technology of natural disaster risk assessment. On the basis of the standard formulation of natural disaster risk and flood disaster risk index, of which weights were developed using combined weights of entropy, the relative membership degree functions of variable fuzzy set (VFS) theory were calculated using improved set pair analysis, while level values were calculated using VFSs, including hazard levels, exposure levels, vulnerability levels and restorability levels, and the flood risk level for each assessment unit was obtained using the natural disaster index method. Consequently, integrated flood risk map was carried out by GIS spatial analysis technique. The results show that the southwestern and central parts of the study area possess higher risk, while the northwestern and southeastern parts possess lower risk. The results got by the assessment model fits the area of historical flood data; this study offer new insights and possibility to carry out an efficient way for flood disaster prevention and mitigation. The study also provides scientific reference in flood risk management for local and national governmental agencies. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Enliang Guo & Jiquan Zhang & Xuehui Ren & Qi Zhang & Zhongyi Sun, 2014. "Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 947-965, November.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:947-965
    DOI: 10.1007/s11069-014-1238-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1238-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1238-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huaizhi Su & Peng Qin & Zhihai Qin, 2013. "A Method for Evaluating Sea Dike Safety," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5157-5170, December.
    2. Heejun Chang & Jon Franczyk & Changhwan Kim, 2009. "What is responsible for increasing flood risks? The case of Gangwon Province, Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 339-354, March.
    3. Xiao-ling Yang & Jie-hua Ding & Hui Hou, 2013. "Application of a triangular fuzzy AHP approach for flood risk evaluation and response measures analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 657-674, September.
    4. Zhongyi Sun & Jiquan Zhang & Qi Zhang & Yue Hu & Denghua Yan & Chunyi Wang, 2014. "Integrated risk zoning of drought and waterlogging disasters based on fuzzy comprehensive evaluation in Anhui Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1639-1657, April.
    5. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    6. Qi Zhang & Jiquan Zhang & Chunyi Wang & Liang Cui & Denghua Yan, 2014. "Risk early warning of maize drought disaster in Northwestern Liaoning Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 701-710, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junfei Chen & Menghua Deng & Lu Xia & Huimin Wang, 2017. "Risk Assessment of Drought, Based on IDM-VFS in the Nanpan River Basin, Yunnan Province, China," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    2. Kun Cheng & Qiang Fu & Tianxiao Li & Qiuxiang Jiang & Wei Liu, 2015. "Regional food security risk assessment under the coordinated development of water resources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 603-619, August.
    3. Enliang Guo & Jiquan Zhang & Yongfang Wang & Ha Si & Feng Zhang, 2016. "Dynamic risk assessment of waterlogging disaster for maize based on CERES-Maize model in Midwest of Jilin Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1747-1761, September.
    4. Shutian Zhou & Guofang Zhai, 2023. "A Multi-Hazard Risk Assessment Framework for Urban Disaster Prevention Planning: A Case Study of Xiamen, China," Land, MDPI, vol. 12(10), pages 1-19, October.
    5. Ruiling Sun & Ge Gao & Zaiwu Gong & Jie Wu, 2020. "A review of risk analysis methods for natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 571-593, January.
    6. Mengtian Lu & Siyu Wang & Xiaoying Wang & Weihong Liao & Chao Wang & Xiaohui Lei & Hao Wang, 2022. "An Assessment of Temporal and Spatial Dynamics of Regional Water Resources Security in the DPSIR Framework in Jiangxi Province, China," IJERPH, MDPI, vol. 19(6), pages 1-21, March.
    7. Jiayang Zhang & Yangbo Chen, 2019. "Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    8. Qingmu Su, 2020. "Long-term flood risk assessment of watersheds under climate change based on the game cross-efficiency DEA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2213-2237, December.
    9. Min Li & Tianyuan Zheng & Jian Zhang & Yunhai Fang & Jiang Liu & Xilai Zheng & Hui Peng, 2019. "A New Risk Assessment System Based on Set Pair Analysis – Variable Fuzzy Sets for Underground Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 4997-5014, December.
    10. Yenan Wu & Ping-an Zhong & Yu Zhang & Bin Xu & Biao Ma & Kun Yan, 2015. "Integrated flood risk assessment and zonation method: a case study in Huaihe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 635-651, August.
    11. Aorui Bi & Shuya Huang & Xinguo Sun, 2023. "Risk Assessment of Oil and Gas Pipeline Based on Vague Set-Weighted Set Pair Analysis Method," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    12. Bahram Choubin & Farzaneh Sajedi Hosseini & Omid Rahmati & Mansor Mehdizadeh Youshanloei, 2023. "A step toward considering the return period in flood spatial modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 431-460, January.
    13. Xianghai Li & Mengjie Li & Kaikai Cui & Tao Lu & Yanli Xie & Delin Liu, 2022. "Evaluation of Comprehensive Emergency Capacity to Urban Flood Disaster: An Example from Zhengzhou City in Henan Province, China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    14. Xue Jin & U. Rashid Sumaila & Kedong Yin, 2020. "Direct and Indirect Loss Evaluation of Storm Surge Disaster Based on Static and Dynamic Input-Output Models," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    15. Chengguang Lai & Xiaohong Chen & Zhaoli Wang & Haijun Yu & Xiaoyan Bai, 2020. "Flood Risk Assessment and Regionalization from Past and Future Perspectives at Basin Scale," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1399-1417, July.
    16. Wen-Cheng Liu & Tien-Hsiang Hsieh & Hong-Ming Liu, 2021. "Flood Risk Assessment in Urban Areas of Southern Taiwan," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    17. Junnan Xiong & Chongchong Ye & Weiming Cheng & Liang Guo & Chenghu Zhou & Xiaolei Zhang, 2019. "The Spatiotemporal Distribution of Flash Floods and Analysis of Partition Driving Forces in Yunnan Province," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    18. Yongfang Wang & Jiquan Zhang & Enliang Guo & Zhongyi Sun, 2015. "Fuzzy Comprehensive Evaluation-Based Disaster Risk Assessment of Desertification in Horqin Sand Land, China," IJERPH, MDPI, vol. 12(2), pages 1-23, February.
    19. Guanjie He & Junrui Chai & Yuan Qin & Zengguang Xu & Shouyi Li, 2020. "Coupled Model of Variable Fuzzy Sets and the Analytic Hierarchy Process and its Application to the Social and Environmental Impact Evaluation of Dam Breaks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2677-2697, July.
    20. Ruiling Sun & Zaiwu Gong & Weiwei Guo & Ashfaq Ahmad Shah & Jie Wu & Haiying Xu, 2022. "Flood disaster risk assessment of and countermeasures toward Yangtze River Delta by considering index interaction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 475-500, May.
    21. Kerim Koc & Zeynep Işık, 2020. "A multi-agent-based model for sustainable governance of urban flood risk mitigation measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1079-1110, October.
    22. Zaihai Wu & Zhaojun Qi & Yunpeng Kou & Zheng Li & Guoyan Zhao & Weizhang Liang, 2022. "Application of Extended Set Pair Analysis on Wear Risk Evaluation of Backfill Pipeline," Sustainability, MDPI, vol. 14(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerim Koc & Zeynep Işık, 2020. "A multi-agent-based model for sustainable governance of urban flood risk mitigation measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1079-1110, October.
    2. Chengguang Lai & Xiaohong Chen & Xiaoyu Chen & Zhaoli Wang & Xushu Wu & Shiwei Zhao, 2015. "A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1243-1259, June.
    3. Chengguang Lai & Xiaohong Chen & Zhaoli Wang & Haijun Yu & Xiaoyan Bai, 2020. "Flood Risk Assessment and Regionalization from Past and Future Perspectives at Basin Scale," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1399-1417, July.
    4. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    5. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    6. Kadriye Burcu Yavuz Kumlu & Şule Tüdeş, 2019. "Determination of earthquake-risky areas in Yalova City Center (Marmara region, Turkey) using GIS-based multicriteria decision-making techniques (analytical hierarchy process and technique for order pr," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 999-1018, April.
    7. Ireneusz Laks & Zbigniew Walczak, 2020. "Efficiency of Polder Modernization for Flood Protection. Case Study of Golina Polder (Poland)," Sustainability, MDPI, vol. 12(19), pages 1-27, September.
    8. Guangpeng Wang & Yong Liu & Ziying Hu & Yanli Lyu & Guoming Zhang & Jifu Liu & Yun Liu & Yu Gu & Xichen Huang & Hao Zheng & Qingyan Zhang & Zongze Tong & Chang Hong & Lianyou Liu, 2020. "Flood Risk Assessment Based on Fuzzy Synthetic Evaluation Method in the Beijing-Tianjin-Hebei Metropolitan Area, China," Sustainability, MDPI, vol. 12(4), pages 1-30, February.
    9. Jiayang Zhang & Yangbo Chen, 2019. "Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    10. Jieun Ryu & Eun Joo Yoon & Chan Park & Dong Kun Lee & Seong Woo Jeon, 2017. "A Flood Risk Assessment Model for Companies and Criteria for Governmental Decision-Making to Minimize Hazards," Sustainability, MDPI, vol. 9(11), pages 1-26, November.
    11. Vo Hoang Ha & Takeshi Mizunoya & Nguyen Duc Kien & Truong Quang Dung & Le Thanh An & Nguyen Thai Phan & Nguyen Quang Tan & Pham Thi Trieu Tien & Nguyen Cong Dinh, 2022. "Post-flood recovery in the central coastal plain of Vietnam: determinants and policy implications," Asia-Pacific Journal of Regional Science, Springer, vol. 6(3), pages 899-929, October.
    12. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
    13. Enliang Guo & Jiquan Zhang & Yongfang Wang & Ha Si & Feng Zhang, 2016. "Dynamic risk assessment of waterlogging disaster for maize based on CERES-Maize model in Midwest of Jilin Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1747-1761, September.
    14. Huaizhi Su & Meng Yang & Zhiping Wen, 2015. "Multi-Layer Multi-Index Comprehensive Evaluation for Dike Safety," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4683-4699, October.
    15. Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.
    16. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    17. Graciano Yumul & Nathaniel Servando & Leilanie Suerte & Mae Magarzo & Leo Juguan & Carla Dimalanta, 2012. "Tropical cyclone–southwest monsoon interaction and the 2008 floods and landslides in Panay island, central Philippines: meteorological and geological factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 827-840, July.
    18. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    19. Geneviève Robert, 2015. "Implementation of a process continuous improvement in the MSHS services [Mise en place d'une démarche d'amélioration continue dans les services de la Maison des Sciences de l'Homme et de la Société," Working Papers hal-01338880, HAL.
    20. Ji-Myong Kim & Seunghyun Son & Sungho Lee & Kiyoung Son, 2020. "Cost of Climate Change: Risk of Building Loss from Typhoon in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-11, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:947-965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.