IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v70y2014i2p1153-1179.html
   My bibliography  Save this article

r.massmov: an open-source landslide model for dynamic early warning systems

Author

Listed:
  • Monia Molinari
  • Massimiliano Cannata
  • Claudia Meisina

Abstract

This paper illustrates the main characteristics of the newly developed landslide model r.massmov, which is based on the shallow water equations, and is capable of simulating the landslide propagation over complex topographies. The model is the result of the reimplementation of the MassMov2D into the free and open-source GRASS GIS with a series of enhancements aiming at allowing its possible integration into innovative early warning monitoring systems and specifically into Web processing services. These improvements, finalized at significantly reducing computational times, include the introduction of a new automatic stopping criterion, fluidization process algorithm, and the parallel computing. Moreover, the results of multi-spatial resolution analysis conducted on a real case study located in the southern Switzerland are presented. In particular, this analysis, composed by a sensitivity analysis and calibration process, allowed to evaluate the model capabilities in simulating the phenomenon at different input data resolution. The results illustrate that the introduced modifications lead to important reductions in the computational time (more than 90 % faster) and that, using the lower dataset resolution capable of guaranteeing reliable results, the model can be run in about 1 s instead of the 3.5 h required by previous model with not optimized dataset resolution. Aside, the results of the research are a series of new GRASS GIS modules for conducting sensitivity analysis and for calibration. The latter integrates the automated calibration program “UCODE” with any GRASS raster module. Finally, the research workflow presented in this paper illustrates a best practice in applying r.massmov in real case applications. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Monia Molinari & Massimiliano Cannata & Claudia Meisina, 2014. "r.massmov: an open-source landslide model for dynamic early warning systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1153-1179, January.
  • Handle: RePEc:spr:nathaz:v:70:y:2014:i:2:p:1153-1179
    DOI: 10.1007/s11069-013-0867-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0867-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0867-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Massimiliano Cannata & Roberto Marzocchi, 2012. "Two-dimensional dam break flooding simulation: a GIS-embedded approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1143-1159, April.
    2. Alexandre Badoux & Christoph Graf & Jakob Rhyner & Richard Kuntner & Brian McArdell, 2009. "A debris-flow alarm system for the Alpine Illgraben catchment: design and performance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(3), pages 517-539, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    2. Luca Schilirò & Gian Marco Marmoni & Matteo Fiorucci & Massimo Pecci & Gabriele Scarascia Mugnozza, 2023. "Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1401-1426, September.
    3. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    4. Sättele, Martina & Bründl, Michael & Straub, Daniel, 2015. "Reliability and effectiveness of early warning systems for natural hazards: Concept and application to debris flow warning," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 192-202.
    5. Hans Romang & Massimiliano Zappa & Nadine Hilker & Matthias Gerber & François Dufour & Valérie Frede & Dominique Bérod & Matthias Oplatka & Christoph Hegg & Jakob Rhyner, 2011. "IFKIS-Hydro: an early warning and information system for floods and debris flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(2), pages 509-527, February.
    6. Arnold Kogelnig & Johannes Hübl & Emma Suriñach & Ignasi Vilajosana & Brian McArdell, 2014. "Infrasound produced by debris flow: propagation and frequency content evolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1713-1733, February.
    7. Kawa Z. Abdulrahman & Mariwan R. Faris & Hekmat M. Ibrahim & Omed S. Q. Yousif & Alan Abubaker Ghafoor & Luqman S. Othman & Moses Karakouzian, 2022. "Hypothetical failure of the Khassa Chai dam and flood risk analysis for Kirkuk, Iraq," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1833-1851, September.
    8. Ruirui Sun & Xiaoling Wang & Zhengyin Zhou & Xuefei Ao & Xiaopei Sun & Mingrui Song, 2014. "Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part I: model development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1547-1568, September.
    9. Giovanni Dolif & Andre Engelbrecht & Alessandro Jatobá & Antônio da Silva & José Gomes & Marcos Borges & Carlos Nobre & Paulo Carvalho, 2013. "Resilience and brittleness in the ALERTA RIO system: a field study about the decision-making of forecasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1831-1847, February.
    10. Han-Chung Yang & Cheng-Wu Chen, 2012. "Potential hazard analysis from the viewpoint of flow measurement in large open-channel junctions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 803-813, March.
    11. F. Comiti & L. Marchi & P. Macconi & M. Arattano & G. Bertoldi & M. Borga & F. Brardinoni & M. Cavalli & V. D’Agostino & D. Penna & J. Theule, 2014. "A new monitoring station for debris flows in the European Alps: first observations in the Gadria basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1175-1198, September.
    12. P. Santi & K. Hewitt & D. VanDine & E. Barillas Cruz, 2011. "Debris-flow impact, vulnerability, and response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(1), pages 371-402, January.
    13. Paul Cleary & Mahesh Prakash & Stuart Mead & Vincent Lemiale & Geoff Robinson & Fanghong Ye & Sida Ouyang & Xinming Tang, 2015. "A scenario-based risk framework for determining consequences of different failure modes of earth dams," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1489-1530, January.
    14. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    15. Julian Stolz & Heidi Elisabeth Megerle, 2022. "Geotrails as a Medium for Education and Geotourism: Recommendations for Quality Improvement Based on the Results of a Research Project in the Swabian Alb UNESCO Global Geopark," Land, MDPI, vol. 11(9), pages 1-37, August.
    16. Michel Ponziani & Paolo Pogliotti & Hervé Stevenin & Sara Maria Ratto, 2020. "Debris-flow Indicator for an early warning system in the Aosta valley region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1819-1839, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:70:y:2014:i:2:p:1153-1179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.