IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v118y2023i2d10.1007_s11069-023-06064-0.html
   My bibliography  Save this article

Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas

Author

Listed:
  • Luca Schilirò

    (Consiglio Nazionale delle Ricerche (CNR))

  • Gian Marco Marmoni

    (Sapienza Università di Roma)

  • Matteo Fiorucci

    (Sapienza Università di Roma
    Università degli Studi di Cassino e del Lazio Meridionale)

  • Massimo Pecci

    (Consiglio dei Ministri (DARA))

  • Gabriele Scarascia Mugnozza

    (Sapienza Università di Roma)

Abstract

Rainfall-induced landslides represent a major threat to human activities, and thus an improved understanding of their triggering mechanisms is needed. The paper reports some preliminary inferences on this topic, based on the data recorded over a 2-year period by a multi-parametric monitoring station located on one of the slopes of the Monterosso catchment (Cinque Terre, north-western Italy). This catchment has experienced multiple, concurrent shallow landslides after intense rainfall events. After defining a soil hydraulic model through data interpretation and numerical simulations, slope stability analyses were performed to elucidate several aspects related to shallow landslide occurrence. Both long-term climate conditions and single rainfall events were simulated via physically based approaches. The findings from these simulations enabled us to assume the pattern of infiltration and quantify the impact of soil hydraulic behavior on landslide triggering conditions. In this regard, various analyses were carried out on the same triggering event both at local scale and in the overall catchment, with a view to highlighting the role of initial soil moisture and soil hysteretic behavior in slope stability.

Suggested Citation

  • Luca Schilirò & Gian Marco Marmoni & Matteo Fiorucci & Massimo Pecci & Gabriele Scarascia Mugnozza, 2023. "Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1401-1426, September.
  • Handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06064-0
    DOI: 10.1007/s11069-023-06064-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06064-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06064-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. V. Tran & M. Alvioli & V. H. Hoang, 2022. "Description of a complex, rainfall-induced landslide within a multi-stage three-dimensional model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1953-1968, February.
    2. Emanuele Raso & Andrea Cevasco & Diego Di Martire & Giacomo Pepe & Patrizio Scarpellini & Domenico Calcaterra & Marco Firpo, 2019. "Landslide-inventory of the Cinque Terre National Park (Italy) and quantitative interaction with the trail network," Journal of Maps, Taylor & Francis Journals, vol. 15(2), pages 818-830, July.
    3. Sangseom Jeong & Kwangwoo Lee & Junghwan Kim & Yongmin Kim, 2017. "Analysis of Rainfall-Induced Landslide on Unsaturated Soil Slopes," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    4. Frederico F. Ávila & Regina C. Alvalá & Rodolfo M. Mendes & Diogo J. Amore, 2021. "The influence of land use/land cover variability and rainfall intensity in triggering landslides: a back-analysis study via physically based models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 1139-1161, January.
    5. K. Sajinkumar & S. Anbazhagan, 2015. "Geomorphic appraisal of landslides on the windward slope of Western Ghats, southern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 953-973, January.
    6. Alexandre Badoux & Christoph Graf & Jakob Rhyner & Richard Kuntner & Brian McArdell, 2009. "A debris-flow alarm system for the Alpine Illgraben catchment: design and performance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(3), pages 517-539, June.
    7. Stefano Luigi Gariano & Massimo Melillo & Silvia Peruccacci & Maria Teresa Brunetti, 2020. "How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 655-670, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shirvani Dastgerdi, Ahmadreza & Sargolini, Massimo & Broussard Allred, Shorna & Chatrchyan, Allison Morrill & Drescher, Michael & DeGeer, Christopher, 2022. "Climate change risk reduction in cultural landscapes: Insights from Cinque Terre and Waterloo," Land Use Policy, Elsevier, vol. 123(C).
    2. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    3. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    4. Joram Wachira Mburu & An-Jui Li & Horn-Da Lin & Chih-Wei Lu, 2022. "Investigations of Unsaturated Slopes Subjected to Rainfall Infiltration Using Numerical Approaches—A Parametric Study and Comparative Review," Sustainability, MDPI, vol. 14(21), pages 1-37, November.
    5. Qiyuan Wang & Jundong Hou, 2023. "Hazard assessment of rainstorm-geohazard disaster chain based on multiple scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 589-610, August.
    6. Sinhang Kang & Seung-Rae Lee & Sung-Eun Cho, 2020. "Slope Stability Analysis of Unsaturated Soil Slopes Based on the Site-Specific Characteristics: A Case Study of Hwangryeong Mountain, Busan, Korea," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    7. Francesco Fusco & Massimiliano Bordoni & Rita Tufano & Valerio Vivaldi & Claudia Meisina & Roberto Valentino & Marco Bittelli & Pantaleone De Vita, 2022. "Hydrological regimes in different slope environments and implications on rainfall thresholds triggering shallow landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 907-939, October.
    8. Sättele, Martina & Bründl, Michael & Straub, Daniel, 2015. "Reliability and effectiveness of early warning systems for natural hazards: Concept and application to debris flow warning," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 192-202.
    9. Weidong Zhao & Yunyun Cheng & Jie Hou & Yihua Chen & Bin Ji & Lei Ma, 2023. "A regional early warning model of geological hazards based on big data of real-time rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3465-3480, April.
    10. Waleed Abdelmoghny Metwaly Ogila, 2021. "Analysis and assessment of slope instability along international mountainous road in North Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2479-2517, April.
    11. Rajkumar Andrewwinner & Sembulichampalayam Sennimalai Chandrasekaran, 2021. "Investigation on the Failure Mechanism of Rainfall-Induced Long-Runout Landslide at Upputhode, Kerala State of India," Land, MDPI, vol. 10(11), pages 1-25, November.
    12. Hans Romang & Massimiliano Zappa & Nadine Hilker & Matthias Gerber & François Dufour & Valérie Frede & Dominique Bérod & Matthias Oplatka & Christoph Hegg & Jakob Rhyner, 2011. "IFKIS-Hydro: an early warning and information system for floods and debris flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(2), pages 509-527, February.
    13. Arnold Kogelnig & Johannes Hübl & Emma Suriñach & Ignasi Vilajosana & Brian McArdell, 2014. "Infrasound produced by debris flow: propagation and frequency content evolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1713-1733, February.
    14. Zhilu Chang & Huanxiang Gao & Faming Huang & Jiawu Chen & Jinsong Huang & Zizheng Guo, 2020. "Study on the creep behaviours and the improved Burgers model of a loess landslide considering matric suction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1479-1497, August.
    15. Kyungjin An & Suyeon Kim & Taebyeong Chae & Daeryong Park, 2018. "Developing an Accessible Landslide Susceptibility Model Using Open-Source Resources," Sustainability, MDPI, vol. 10(2), pages 1-13, January.
    16. Giacomo Pepe & Elena Baudinelli & Matteo Zanini & Domenico Calcaterra & Andrea Cevasco & Patrizio Scarpellini & Marco Firpo, 2020. "Application of Bioengineering Techniques as Geo-Hydrological Risk Mitigation Measures in a Highly Valuable Cultural Landscape: Experiences from the Cinque Terre National Park (Italy)," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    17. K. Sajinkumar, 2015. "Trema orientalis: a suspected indicator plant for palaeo-landslides in tropical areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2169-2174, September.
    18. Ahmadreza Shirvani Dastgerdi & Reza Kheyroddin, 2022. "Policy Recommendations for Integrating Resilience into the Management of Cultural Landscapes," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    19. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
    20. Ming-Chien Chung & Chien-Hsin Chen & Ching-Fang Lee & Wei-Kai Huang & Chih-Hao Tan, 2018. "Failure Impact Assessment for Large-Scale Landslides Located Near Human Settlement: Case Study in Southern Taiwan," Sustainability, MDPI, vol. 10(5), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:118:y:2023:i:2:d:10.1007_s11069-023-06064-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.