IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i1d10.1007_s11069-022-05417-5.html
   My bibliography  Save this article

Hydrological regimes in different slope environments and implications on rainfall thresholds triggering shallow landslides

Author

Listed:
  • Francesco Fusco

    (Politecnico di Milano
    University of Naples Federico II)

  • Massimiliano Bordoni

    (University of Pavia)

  • Rita Tufano

    (University of Naples Federico II)

  • Valerio Vivaldi

    (University of Pavia)

  • Claudia Meisina

    (University of Pavia)

  • Roberto Valentino

    (University of Parma)

  • Marco Bittelli

    (University of Bologna)

  • Pantaleone De Vita

    (University of Naples Federico II)

Abstract

Assessing hazard of rainfall-induced shallow landslides represents a challenge for the risk management of urbanized areas for which the setting up of early warning systems, based on the reconstruction of reliable rainfall thresholds and rainfall monitoring, is a solution more practicable than the delocalization of settlements and infrastructures. Consequently, the reduction in uncertainties affecting the estimation of rainfall thresholds conditions, leading to the triggering of slope instabilities, is a fundament task to be tackled. In such a view, coupled soil hydrological monitoring and physics-based modeling approaches are presented for estimating rainfall thresholds in two different geomorphological environments prone to shallow landsliding. Based on the comparison of results achieved for silty–clayey soils characterizing Oltrepò Pavese area (northern Italy) and ash-fall pyroclastic soils mantling slopes of Sarno Mountains ridge (southern Italy), this research advances the understanding of the slope hydrological response in triggering shallow landslides. Among the principal results is the comprehension that, mainly depending on geological and geomorphological settings, geotechnical and hydrological properties of soil coverings have a fundamental control on the timing and intensity of hydrological processes leading to landslide initiation. Moreover, results obtained show how the characteristics of the soil coverings control the slope hydrological response at different time scales, making the antecedent soil hydrological conditions a not negligible factor for estimating landslide rainfall thresholds. The approaches proposed can be conceived as an adaptable tool to assess hazard to initiation of shallow rainfall-induced landslides and to implement early-warning systems from site-specific to distributed (catchment or larger) scales.

Suggested Citation

  • Francesco Fusco & Massimiliano Bordoni & Rita Tufano & Valerio Vivaldi & Claudia Meisina & Roberto Valentino & Marco Bittelli & Pantaleone De Vita, 2022. "Hydrological regimes in different slope environments and implications on rainfall thresholds triggering shallow landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 907-939, October.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05417-5
    DOI: 10.1007/s11069-022-05417-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05417-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05417-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dieu Tien Bui & Biswajeet Pradhan & Owe Lofman & Inge Revhaug & Øystein Dick, 2013. "Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 707-730, March.
    2. A. Vallet & D. Varron & C. Bertrand & O. Fabbri & J. Mudry, 2016. "A multi-dimensional statistical rainfall threshold for deep landslides based on groundwater recharge and support vector machines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 821-849, November.
    3. A. Rosi & D. Lagomarsino & G. Rossi & S. Segoni & A. Battistini & N. Casagli, 2015. "Updating EWS rainfall thresholds for the triggering of landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 297-308, August.
    4. Stefano Luigi Gariano & Massimo Melillo & Silvia Peruccacci & Maria Teresa Brunetti, 2020. "How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 655-670, January.
    5. Stefano Vitale & Sabatino Ciarcia, 2018. "Tectono-stratigraphic setting of the Campania region (southern Italy)," Journal of Maps, Taylor & Francis Journals, vol. 14(2), pages 9-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jana Smolíková & Filip Hrbáček & Jan Blahůt & Jan Klimeš & Vít Vilímek & Juan Carlos Loaiza Usuga, 2021. "Analysis of the rainfall pattern triggering the Lemešná debris flow, Javorníky Range, the Czech Republic," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2353-2379, April.
    2. Luca Schilirò & Gian Marco Marmoni & Matteo Fiorucci & Massimo Pecci & Gabriele Scarascia Mugnozza, 2023. "Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1401-1426, September.
    3. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    4. Bambang H. Trisasongko & Dyah R. Panuju & Amy L. Griffin & David J. Paull, 2022. "Fully Polarimetric L-Band Synthetic Aperture Radar for the Estimation of Tree Girth as a Representative of Stand Productivity in Rubber Plantations," Geographies, MDPI, vol. 2(2), pages 1-13, March.
    5. Aminreza Neshat & Biswajeet Pradhan, 2015. "Risk assessment of groundwater pollution with a new methodological framework: application of Dempster–Shafer theory and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1565-1585, September.
    6. Rita Tufano & Luigi Guerriero & Mariagiulia Annibali Corona & Giuseppe Bausilio & Diego Di Martire & Stefania Nisio & Domenico Calcaterra, 2022. "Anthropogenic sinkholes of the city of Naples, Italy: an update," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2577-2608, July.
    7. Weidong Zhao & Yunyun Cheng & Jie Hou & Yihua Chen & Bin Ji & Lei Ma, 2023. "A regional early warning model of geological hazards based on big data of real-time rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3465-3480, April.
    8. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    9. Min Lee & Kim Ng & Yuk Huang & Wei Li, 2014. "Rainfall-induced landslides in Hulu Kelang area, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 353-375, January.
    10. Ekrem Canli & Bernd Loigge & Thomas Glade, 2018. "Spatially distributed rainfall information and its potential for regional landslide early warning systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 103-127, April.
    11. Hyuck-Jin Park & Kang-Min Kim & In-Tak Hwang & Jung-Hyun Lee, 2022. "Regional Landslide Hazard Assessment Using Extreme Value Analysis and a Probabilistic Physically Based Approach," Sustainability, MDPI, vol. 14(5), pages 1-17, February.
    12. Rattana Salee & Avirut Chinkulkijniwat & Somjai Yubonchit & Suksun Horpibulsuk & Chadanit Wangfaoklang & Sirirat Soisompong, 2022. "New threshold for landslide warning in the southern part of Thailand integrates cumulative rainfall with event rainfall depth-duration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 125-141, August.
    13. Alessandro C. Mondini & Fausto Guzzetti & Massimo Melillo, 2023. "Deep learning forecast of rainfall-induced shallow landslides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Ogbonnaya Igwe & Chinero Nneka Ayogu & Raphael Iweanya Maduka & Nnadozie Onyekachi Ayogu & Tochukwu A. S. Ugwoke, 2023. "Slope failures and safety index assessment of waste rock dumps in Nigeria’s major mines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1331-1370, January.
    15. Elias Garcia-Urquia, 2016. "Establishing rainfall frequency contour lines as thresholds for rainfall-induced landslides in Tegucigalpa, Honduras, 1980–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 2107-2132, July.
    16. Nicoletta Santangelo & Vincenzo Amato & Alessandra Ascione & Elda Russo Ermolli & Ettore Valente, 2020. "GEOTOURISM as a Tool for Learning: A Geoitinerary in the Cilento, Vallo di Diano and Alburni Geopark (Southern Italy)," Resources, MDPI, vol. 9(6), pages 1-23, June.
    17. Massimiliano Bordoni & Valerio Vivaldi & Roberta Bonì & Simone Spanò & Mauro Tararbra & Luca Lanteri & Matteo Parnigoni & Alessandra Grossi & Silvia Figini & Claudia Meisina, 2023. "A methodology for the analysis of continuous time-series of automatic inclinometers for slow-moving landslides monitoring in Piemonte region, northern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1115-1142, January.
    18. S. L. Gariano & G. Verini Supplizi & F. Ardizzone & P. Salvati & C. Bianchi & R. Morbidelli & C. Saltalippi, 2021. "Long-term analysis of rainfall-induced landslides in Umbria, central Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2207-2225, April.
    19. Alessio Valente & Vittorio Catani & Libera Esposito & Guido Leone & Mauro Pagnozzi & Francesco Fiorillo, 2022. "Groundwater Resources in a Complex Karst Environment Involved by Wind Power Farm Construction," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    20. Quang-Khanh Nguyen & Dieu Tien Bui & Nhat-Duc Hoang & Phan Trong Trinh & Viet-Ha Nguyen & Isık Yilmaz, 2017. "A Novel Hybrid Approach Based on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides using GIS," Sustainability, MDPI, vol. 9(5), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05417-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.