IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i4d10.1007_s11069-024-06941-2.html
   My bibliography  Save this article

Assessing rainfall threshold for shallow landslides triggering: a case study in the Alpes Maritimes region, France

Author

Listed:
  • Sophie Barthélemy

    (BRGM
    CNRM, Université de Toulouse, Météo-France, CNRS)

  • Séverine Bernardie

    (BRGM)

  • Gilles Grandjean

    (BRGM)

Abstract

In this work, we use a statistical approach for modeling shallow landslide rainfall thresholds (Caine 1980) with a case study for the Alpes-Maritimes region (France). Cumulated rainfall / duration (ED) thresholds are obtained with the CTRL-T algorithm (Melillo and al. 2018) for different non-exceedance probabilities from a landslide and two climatic datasets. This tool allows to automatically define rainfall events that might trigger landslides, ensuring robustness and objectivity in this process. The first climate dataset stores high resolution gridded rainfall data (1km resolution, hourly), which provides rainfall data with high temporal and spatial accuracy. This dataset, coming from radar data, is calibrated with rainfall gauges, ensuring a higher accuracy of the rainfall measurements. It provides the rainfall records directly used in the threshold construction The second dataset contains lower resolution gridded rainfall, snow, temperature, and evapotranspiration data (8km resolution, daily); it enables to assess the region’s climate through parameters imported in CTRL-T. The thresholds are then validated using a method designed by Gariano and et al. (2015). Several improvements are made to the initial method. First, evapotranspiration values approximated in the process are replaced by values from the second climate dataset, the result accounting best for the regional climate. Then, computing duration values used for isolating events and sub-events for each mesh point allows to consider the heterogeneity of the Alpes-Maritimes climate. Rainfall thresholds are eventually obtained, successively from a set of probable conditions (MRC) and a set of highly probable conditions (MPRC). The validation process strengthens the analysis as well as enables to identify best performing thresholds. This work represents novel scientific progress towards landslide reliable warning systems by (a) making a case study of empirical rainfall thresholds for Alpes-Maritimes, (b) using high-resolution rainfall data and (c) adapting the method to climatically heterogeneous zones.

Suggested Citation

  • Sophie Barthélemy & Séverine Bernardie & Gilles Grandjean, 2025. "Assessing rainfall threshold for shallow landslides triggering: a case study in the Alpes Maritimes region, France," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4023-4049, March.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:4:d:10.1007_s11069-024-06941-2
    DOI: 10.1007/s11069-024-06941-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06941-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06941-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefano Luigi Gariano & Massimo Melillo & Silvia Peruccacci & Maria Teresa Brunetti, 2020. "How much does the rainfall temporal resolution affect rainfall thresholds for landslide triggering?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 655-670, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Schilirò & Gian Marco Marmoni & Matteo Fiorucci & Massimo Pecci & Gabriele Scarascia Mugnozza, 2023. "Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1401-1426, September.
    2. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    3. Francesco Fusco & Massimiliano Bordoni & Rita Tufano & Valerio Vivaldi & Claudia Meisina & Roberto Valentino & Marco Bittelli & Pantaleone De Vita, 2022. "Hydrological regimes in different slope environments and implications on rainfall thresholds triggering shallow landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 907-939, October.
    4. Weidong Zhao & Yunyun Cheng & Jie Hou & Yihua Chen & Bin Ji & Lei Ma, 2023. "A regional early warning model of geological hazards based on big data of real-time rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3465-3480, April.
    5. Ratna Satyaningsih & Victor Jetten & Janneke Ettema & Ardhasena Sopaheluwakan & Luigi Lombardo & Danang Eko Nuryanto, 2023. "Dynamic rainfall thresholds for landslide early warning in Progo Catchment, Java, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 2133-2158, December.
    6. Rattana Salee & Avirut Chinkulkijniwat & Somjai Yubonchit & Suksun Horpibulsuk & Chadanit Wangfaoklang & Sirirat Soisompong, 2022. "New threshold for landslide warning in the southern part of Thailand integrates cumulative rainfall with event rainfall depth-duration," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 125-141, August.
    7. Alessandro C. Mondini & Fausto Guzzetti & Massimo Melillo, 2023. "Deep learning forecast of rainfall-induced shallow landslides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. S. L. Gariano & G. Verini Supplizi & F. Ardizzone & P. Salvati & C. Bianchi & R. Morbidelli & C. Saltalippi, 2021. "Long-term analysis of rainfall-induced landslides in Umbria, central Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2207-2225, April.
    9. Zhongyuan Xu & Zhilin Xiao & Xiaoyan Zhao & Zhigang Ma & Qun Zhang & Pu Zeng & Xiaoqiong Zhang, 2024. "Derivation of Landslide Rainfall Thresholds by Geostatistical Methods in Southwest China," Sustainability, MDPI, vol. 16(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:4:d:10.1007_s11069-024-06941-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.