IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v49y2009i3p517-539.html
   My bibliography  Save this article

A debris-flow alarm system for the Alpine Illgraben catchment: design and performance

Author

Listed:
  • Alexandre Badoux
  • Christoph Graf
  • Jakob Rhyner
  • Richard Kuntner
  • Brian McArdell

Abstract

We describe the development, implementation, and first analyses of the performance of a debris-flow warning system for the Illgraben catchment and debris fan area. The Illgraben catchment (9.5 km 2 ), located in the Canton of Valais, Switzerland, in the Rhone River valley, is characterized by frequent and voluminous sediment transport and debris-flow activity, and is one of the most active debris-flow catchments in the Alps. It is the site of an instrumented debris-flow observation station in operation since the year 2000. The residents in Susten (municipality Leuk), tourists, and other land users, are exposed to a significant hazard. The warning system consists of four modules: community organizational planning (hazard awareness and preparedness), event detection and alerting, geomorphic catchment observation, and applied research to facilitate the development of an early warning system based on weather forecasting. The system presently provides automated alert signals near the active channel prior to (5–15 min) the arrival of a debris flow or flash flood at the uppermost frequently used channel crossing. It is intended to provide data to support decision-making for warning and evacuation, especially when unusually large debris flows are expected to leave the channel near populated areas. First-year results of the detection and alert module in comparison with the data from the independent debris-flow observation station are generally favorable. Twenty automated alerts (alarms) were issued, which triggered flashing lights and sirens at all major footpaths crossing the channel bed, for three debris flows and 16 flood flows. Only one false alarm was issued. The major difficulty we encountered is related to the variability and complexity of the events (e.g., events consisting of multiple surges) and can be largely solved by increasing the duration of the alarm. All of the alarms for hazardous events were produced by storms with a rainfall duration and intensity larger than the threshold for debris-flow activity that was defined in an earlier study, supporting our intention to investigate the use of rainfall forecasts to increase the time available for warning and implementation of active countermeasures. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Alexandre Badoux & Christoph Graf & Jakob Rhyner & Richard Kuntner & Brian McArdell, 2009. "A debris-flow alarm system for the Alpine Illgraben catchment: design and performance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(3), pages 517-539, June.
  • Handle: RePEc:spr:nathaz:v:49:y:2009:i:3:p:517-539
    DOI: 10.1007/s11069-008-9303-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-008-9303-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-008-9303-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Arattano, 1999. "On the Use of Seismic Detectors as Monitoring and Warning Systems for Debris Flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 20(2), pages 197-213, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sättele, Martina & Bründl, Michael & Straub, Daniel, 2015. "Reliability and effectiveness of early warning systems for natural hazards: Concept and application to debris flow warning," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 192-202.
    2. Giovanni Dolif & Andre Engelbrecht & Alessandro Jatobá & Antônio da Silva & José Gomes & Marcos Borges & Carlos Nobre & Paulo Carvalho, 2013. "Resilience and brittleness in the ALERTA RIO system: a field study about the decision-making of forecasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1831-1847, February.
    3. F. Comiti & L. Marchi & P. Macconi & M. Arattano & G. Bertoldi & M. Borga & F. Brardinoni & M. Cavalli & V. D’Agostino & D. Penna & J. Theule, 2014. "A new monitoring station for debris flows in the European Alps: first observations in the Gadria basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1175-1198, September.
    4. Monia Molinari & Massimiliano Cannata & Claudia Meisina, 2014. "r.massmov: an open-source landslide model for dynamic early warning systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1153-1179, January.
    5. Luca Schilirò & Gian Marco Marmoni & Matteo Fiorucci & Massimo Pecci & Gabriele Scarascia Mugnozza, 2023. "Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1401-1426, September.
    6. Michel Ponziani & Paolo Pogliotti & Hervé Stevenin & Sara Maria Ratto, 2020. "Debris-flow Indicator for an early warning system in the Aosta valley region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1819-1839, November.
    7. P. Santi & K. Hewitt & D. VanDine & E. Barillas Cruz, 2011. "Debris-flow impact, vulnerability, and response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(1), pages 371-402, January.
    8. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    9. Hans Romang & Massimiliano Zappa & Nadine Hilker & Matthias Gerber & François Dufour & Valérie Frede & Dominique Bérod & Matthias Oplatka & Christoph Hegg & Jakob Rhyner, 2011. "IFKIS-Hydro: an early warning and information system for floods and debris flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(2), pages 509-527, February.
    10. Arnold Kogelnig & Johannes Hübl & Emma Suriñach & Ignasi Vilajosana & Brian McArdell, 2014. "Infrasound produced by debris flow: propagation and frequency content evolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1713-1733, February.
    11. Arash Malekian & Ali Azarnivand, 2016. "Application of Integrated Shannon’s Entropy and VIKOR Techniques in Prioritization of Flood Risk in the Shemshak Watershed, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 409-425, January.
    12. Julian Stolz & Heidi Elisabeth Megerle, 2022. "Geotrails as a Medium for Education and Geotourism: Recommendations for Quality Improvement Based on the Results of a Research Project in the Swabian Alb UNESCO Global Geopark," Land, MDPI, vol. 11(9), pages 1-37, August.
    13. Han-Chung Yang & Cheng-Wu Chen, 2012. "Potential hazard analysis from the viewpoint of flow measurement in large open-channel junctions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 803-813, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conny Hammer & Donat Fäh & Matthias Ohrnberger, 2017. "Automatic detection of wet-snow avalanche seismic signals," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 601-618, March.
    2. Arnold Kogelnig & Johannes Hübl & Emma Suriñach & Ignasi Vilajosana & Brian McArdell, 2014. "Infrasound produced by debris flow: propagation and frequency content evolution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1713-1733, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:49:y:2009:i:3:p:517-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.