IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v113y2022i3d10.1007_s11069-022-05371-2.html
   My bibliography  Save this article

Hypothetical failure of the Khassa Chai dam and flood risk analysis for Kirkuk, Iraq

Author

Listed:
  • Kawa Z. Abdulrahman

    (University of Sulaimani
    University of Nevada)

  • Mariwan R. Faris

    (University of Kirkuk
    University of Nevada)

  • Hekmat M. Ibrahim

    (University of Sulaimani
    University of Nevada)

  • Omed S. Q. Yousif

    (University of Sulaimani
    University of Nevada)

  • Alan Abubaker Ghafoor

    (University of Sulaimani
    University of Nevada)

  • Luqman S. Othman

    (University of Halabja
    University of Nevada)

  • Moses Karakouzian

    (University of Halabja
    University of Nevada)

Abstract

Many of Iraqi's high-hazard dams lack an Emergency Action Plan, which should include a flood inundation map to show which downstream areas would be flooded if the dams were to fail. This article presents the results of the simulation of a hypothetical 2D dam break for the 58 m high Khassa Chai dam in Kirkuk, Iraq, using HEC-RAS 2D 5.0.7 software. The Khassa Chai dam is situated 7.4 km north of Kirkuk. The simulations revealed that the dam-break flood will affect eight major bridges and the majority of Kirkuk city's metropolitan neighborhoods. Within an hour, the floodwaters will reach the city's center. The flood hazard map revealed that if the Khassa Chai dam fails, many people, vehicles, and structures will be at danger. The findings of this paper can be used to identify evacuation routes and refuge sites as well as build suitable warning systems in order to limit the risk for fatalities if the Khassa Chai dam fails. Moreover, as the effect of modeling bridges downstream of failed dams has not been explored yet, to the knowledge of the authors, eight bridges have been modeled. It was concluded that ignoring bridges in such a large dam break model will not affect the results significantly, which saves the time of data collection and model development.

Suggested Citation

  • Kawa Z. Abdulrahman & Mariwan R. Faris & Hekmat M. Ibrahim & Omed S. Q. Yousif & Alan Abubaker Ghafoor & Luqman S. Othman & Moses Karakouzian, 2022. "Hypothetical failure of the Khassa Chai dam and flood risk analysis for Kirkuk, Iraq," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1833-1851, September.
  • Handle: RePEc:spr:nathaz:v:113:y:2022:i:3:d:10.1007_s11069-022-05371-2
    DOI: 10.1007/s11069-022-05371-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05371-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05371-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Massimiliano Cannata & Roberto Marzocchi, 2012. "Two-dimensional dam break flooding simulation: a GIS-embedded approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1143-1159, April.
    2. Denghua Zhong & Yuefeng Sun & Mingchao Li, 2011. "Dam break threshold value and risk probability assessment for an earth dam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(1), pages 129-147, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    2. Monia Molinari & Massimiliano Cannata & Claudia Meisina, 2014. "r.massmov: an open-source landslide model for dynamic early warning systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1153-1179, January.
    3. Chong-Xun Mo & Gui-Yan Mo & Liu Peng & Qing Yang & Xin-Rong Zhu & Qing-Ling Jiang & Ju-Liang Jin, 2019. "Quantitative Vulnerability Model of Earth Dam Overtopping and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1801-1815, March.
    4. Huai Su & Jiang Hu & Zhi Wen, 2013. "Optimization of reinforcement strategies for dangerous dams considering time-average system failure probability and benefit–cost ratio using a life quality index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 799-817, January.
    5. Te Wang & Zongkun Li & Wei Ge & Yadong Zhang & Yutie Jiao & Hua Zhang & Heqiang Sun & Pieter Gelder, 2023. "Risk assessment methods of cascade reservoir dams: a review and reflection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1601-1622, January.
    6. Paul Cleary & Mahesh Prakash & Stuart Mead & Vincent Lemiale & Geoff Robinson & Fanghong Ye & Sida Ouyang & Xinming Tang, 2015. "A scenario-based risk framework for determining consequences of different failure modes of earth dams," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1489-1530, January.
    7. Huaizhi Su & Jiang Hu & Men Yang & Zhiping Wen, 2015. "Assessment and prediction for service life of water resources and hydropower engineering," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 3005-3019, February.
    8. Huaizhi Su & Xiaoqun Yan & Hongping Liu & Zhiping Wen, 2017. "Integrated Multi-Level Control Value and Variation Trend Early-Warning Approach for Deformation Safety of Arch Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 2025-2045, April.
    9. Ruirui Sun & Xiaoling Wang & Zhengyin Zhou & Xuefei Ao & Xiaopei Sun & Mingrui Song, 2014. "Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part I: model development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1547-1568, September.
    10. Sherong Zhang & Yaosheng Tan, 2014. "Risk assessment of earth dam overtopping and its application research," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 717-736, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:113:y:2022:i:3:d:10.1007_s11069-022-05371-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.