IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v65y2013i3p1913-1930.html
   My bibliography  Save this article

Changes in annual and seasonal temperature extremes in the arid region of China, 1960–2010

Author

Listed:
  • Huaijun Wang
  • Yaning Chen
  • Zhongshen Chen
  • Weihong Li

Abstract

Daily data of minimum and maximum temperature from 76 meteorological stations for 1960–2010 are used to detect the annual and seasonal variations of temperature extremes in the arid region, China. The Mann–Kendall test and Sen estimator are used to assess the significance of the trend and amount of change, respectively. Fifteen temperature indices are examined. The temperature extremes show patterns consistent with warming, with a large proportion of stations showing statistically significant trends. Warming trends in indices derived from daily minimum temperature are of greater magnitudes than those from maximum temperature, and stations along the Tianshan Mountains have larger trend magnitudes. The decreases in frequency for cold extremes mainly occur in summer and autumn, while warm extremes show significant increases in frequency in autumn and winter. For the arid region as a whole, the occurrence of cold nights and cold days has decreased by −1.89 and −0.89 days/decade, respectively, and warm nights and warm days has increased by 2.85 and 1.37 days/decade, respectively. The number of frost days and ice days exhibit significant decreasing trends at the rates of −3.84 and −2.07 days/decade. The threshold indices also show statistically significant increasing trends, with the extreme lowest temperatures faster than highest temperatures. The diurnal temperature range has decreased by 0.23 °C/decade, which is in accordance with the more rapid increases in minimum temperature than in maximum temperature. The results of this study will be useful for local human mitigation to alterations in water resources and ecological environment in the arid region of China due to the changes of temperature extremes. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Huaijun Wang & Yaning Chen & Zhongshen Chen & Weihong Li, 2013. "Changes in annual and seasonal temperature extremes in the arid region of China, 1960–2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1913-1930, February.
  • Handle: RePEc:spr:nathaz:v:65:y:2013:i:3:p:1913-1930
    DOI: 10.1007/s11069-012-0454-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0454-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0454-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoph Schär & Gerd Jendritzky, 2004. "Hot news from summer 2003," Nature, Nature, vol. 432(7017), pages 559-560, December.
    2. David E. Parker, 2004. "Large-scale warming is not urban," Nature, Nature, vol. 432(7015), pages 290-290, November.
    3. Xingming Hao & Yaning Chen & Changchun Xu & Weihong Li, 2008. "Impacts of Climate Change and Human Activities on the Surface Runoff in the Tarim River Basin over the Last Fifty Years," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1159-1171, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Song & Zhao Zhang & Yi Chen & Pin Wang & Ming Xiang & Peijun Shi & Fulu Tao, 2014. "Spatiotemporal changes of global extreme temperature events (ETEs) since 1981 and the meteorological causes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 975-994, January.
    2. Liangliang Zhang & Zhao Zhang & Yi Chen & Xing Wei & Xiao Song, 2018. "Exposure, vulnerability, and adaptation of major maize-growing areas to extreme temperature," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1257-1272, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chesheng Zhan & Sidong Zeng & Shanshan Jiang & Huixiao Wang & Wen Ye, 2014. "An Integrated Approach for Partitioning the Effect of Climate Change and Human Activities on Surface Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3843-3858, September.
    2. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    3. Leting Lyu & Xiaorui Wang & Caizhi Sun & Tiantian Ren & Defeng Zheng, 2019. "Quantifying the Effect of Land Use Change and Climate Variability on Green Water Resources in the Xihe River Basin, Northeast China," Sustainability, MDPI, vol. 11(2), pages 1-14, January.
    4. Ross McKitrick, 2013. "Encompassing tests of socioeconomic signals in surface climate data," Climatic Change, Springer, vol. 120(1), pages 95-107, September.
    5. Ye, Wang & Wong, Wing-Keung & Arnone, Gioia & Nassani, Abdelmohsen A. & Haffar, Mohamed & Faiz, Muhammad Fauzinudin, 2023. "Crypto currency and green investment impact on global environment: A time series analysis," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 155-169.
    6. Jason Corburn, 2009. "Cities, Climate Change and Urban Heat Island Mitigation: Localising Global Environmental Science," Urban Studies, Urban Studies Journal Limited, vol. 46(2), pages 413-427, February.
    7. Waleed Abbas & Islam Hamdi, 2022. "Satellite-Based Discrimination of Urban Dynamics-Induced Local Bias from Day/Night Temperature Trends across the Nile Delta, Egypt: A Basis for Climate Change Impacts Assessment," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
    8. Zhe Yuan & Denghua Yan & Zhiyong Yang & Jijun Xu & Junjun Huo & Yanlai Zhou & Cheng Zhang, 2018. "Attribution assessment and projection of natural runoff change in the Yellow River Basin of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 27-49, January.
    9. J. Doummar & M. Massoud & R. Khoury & M. Khawlie, 2009. "Optimal Water Resources Management: Case of Lower Litani River, Lebanon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2343-2360, September.
    10. Bista, Raghu, 2019. "Groping climate vulnerability in western mountainous Nepal: applying climate vulnerability index," MPRA Paper 99047, University Library of Munich, Germany, revised 04 Jan 2019.
    11. Li, Canbing & Zhou, Jinju & Cao, Yijia & Zhong, Jin & Liu, Yu & Kang, Chongqing & Tan, Yi, 2014. "Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season," Applied Energy, Elsevier, vol. 117(C), pages 149-156.
    12. Venkata B. Dodla & G. Ch. Satyanarayana & Srinivas Desamsetti, 2017. "Analysis and prediction of a catastrophic Indian coastal heat wave of 2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 395-414, May.
    13. Han Lim & Kanokporn Boochabun & Alan Ziegler, 2012. "Modifiers and Amplifiers of High and low Flows on the Ping River in Northern Thailand (1921–2009): The Roles of Climatic Events and Anthropogenic Activity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4203-4224, November.
    14. Paavola, Jouni & Adger, W. Neil, 2006. "Fair adaptation to climate change," Ecological Economics, Elsevier, vol. 56(4), pages 594-609, April.
    15. Jianhua Xu & Yaning Chen & Weihong Li & Qin Nie & Chunan Song & Chunmeng Wei, 2014. "Integrating Wavelet Analysis and BPANN to Simulate the Annual Runoff With Regional Climate Change: A Case Study of Yarkand River, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2523-2537, July.
    16. Jing Li & Xin Xu & Guoyong Ding & Yun Zhao & Ruixia Zhao & Fuzhong Xue & Jing Li & Jinghong Gao & Jun Yang & Baofa Jiang & Qiyong Liu, 2016. "A Cross-Sectional Study of Heat Wave-Related Knowledge, Attitude, and Practice among the Public in the Licheng District of Jinan City, China," IJERPH, MDPI, vol. 13(7), pages 1-16, June.
    17. Staszczuk, Anna & Wojciech, Magdalena & Kuczyński, Tadeusz, 2017. "The effect of floor insulation on indoor air temperature and energy consumption of residential buildings in moderate climates," Energy, Elsevier, vol. 138(C), pages 139-146.
    18. Xiaona Li & Weimin Ma & Xiaosheng Wang & Longfei Zhang, 2022. "A Hybrid DPSR and Entropy-Weight-Based Uncertain Comprehensive Evaluation Method for Human-Water Harmony Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1727-1743, March.
    19. Peter Stott & Nikolaos Christidis & Richard Betts, 2011. "Changing return periods of weather-related impacts: the attribution challenge," Climatic Change, Springer, vol. 109(3), pages 263-268, December.
    20. Junliang Qiu & Xiankun Yang & Bowen Cao & Zhilong Chen & Yuxuan Li, 2020. "Effects of Urbanization on Regional Extreme-Temperature Changes in China, 1960–2016," Sustainability, MDPI, vol. 12(16), pages 1-29, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:65:y:2013:i:3:p:1913-1930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.