IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14510-d963681.html
   My bibliography  Save this article

Satellite-Based Discrimination of Urban Dynamics-Induced Local Bias from Day/Night Temperature Trends across the Nile Delta, Egypt: A Basis for Climate Change Impacts Assessment

Author

Listed:
  • Waleed Abbas

    (Department of Geography & GIS, Ain Shams University, Cairo 11566, Egypt)

  • Islam Hamdi

    (Department of Geography & GIS, Beni-Suef University, Beni-Suef 62521, Egypt)

Abstract

The Nile Delta is the most vital region of the desert-dominated country of Egypt. Due to its prominent level of vulnerability to climate change’s negative impacts and its low capacity for adaptation and mitigation, the current study aims to provide accurate quantification of temperature change across the Nile Delta as an integral basis for sustainability and climate change impacts assessment studies. This was achieved through monitoring urban dynamics and detecting LST trends in 91 cities and their rural surroundings. The relevant local urban bias was discriminated from regional/background changes present in diurnal/nocturnal temperature records. The temperature records were then corrected/adjusted by removing this urban bias. Owing to the insufficiency of ground-based meteorological observatories, the investigation utilized moderate resolution imaging spectroradiometer (MODIS) land surface temperatures (LSTs) and Landsat-based datasets (2000–2021). The widely used Mann–Kendall test (MKT) and Theil–Sen estimator (TSE) were employed to assess trends in urban sprawl, LST time series, and the implied association. The analysis revealed that the region has experienced dramatic urbanization, where the total urban expansion was greater than two-thirds (69.1%) of the original urban area in 2000. This was accompanied by a notable warming trend in the day/night and urban/rural LST records. The nocturnal LST exhibited a warming tendency (0.072 °C year −1 ) larger than the diurnal equivalent (0.065 °C year −1 ). The urban dynamics were positively correlated with LST trends, whereas the Mediterranean Sea appeared as a significant anti-urbanization moderator, in addition to the Nile River and the prevailing northerly/northwesterly winds. The urban–rural comparison approach disclosed that the urbanization process caused a warming bias in the nighttime LST trend by 0.017 °C year −1 (21.8%) and a cooling bias in the daytime by −0.002 °C year −1 (4.4%). All results were statistically significant at a confidence level of 99%. It is recommended that studies of climate-related sustainability and climate change impact assessment in the Nile Delta should apply a distinction of urban-induced local effect when quantifying the actual regional temperature change.

Suggested Citation

  • Waleed Abbas & Islam Hamdi, 2022. "Satellite-Based Discrimination of Urban Dynamics-Induced Local Bias from Day/Night Temperature Trends across the Nile Delta, Egypt: A Basis for Climate Change Impacts Assessment," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14510-:d:963681
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. Ignacio Cazcarro & Iñaki Arto & Somnath Hazra & Rabindra Nath Bhattacharya & Prince Osei-Wusu Adjei & Patrick K. Ofori-Danson & Joseph K. Asenso & Samuel K. Amponsah & Bazlul Khondker & Selim Raihan &, 2018. "Biophysical and Socioeconomic State and Links of Deltaic Areas Vulnerable to Climate Change: Volta (Ghana), Mahanadi (India) and Ganges-Brahmaputra-Meghna (India and Bangladesh)," Sustainability, MDPI, vol. 10(3), pages 1-22, March.
    3. Hazem S. Kassem & Abdel Raouf Suleiman Bello & Bader M. Alotaibi & Fahd O. Aldosri & Gary S. Straquadine, 2019. "Climate Change Adaptation in the Delta Nile Region of Egypt: Implications for Agricultural Extension," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
    4. Ana Andries & Richard J. Murphy & Stephen Morse & Jim Lynch, 2021. "Earth Observation for Monitoring, Reporting, and Verification within Environmental Land Management Policy," Sustainability, MDPI, vol. 13(16), pages 1-34, August.
    5. Mansour Almazroui & M. Islam & P. Jones, 2013. "Urbanization effects on the air temperature rise in Saudi Arabia," Climatic Change, Springer, vol. 120(1), pages 109-122, September.
    6. David E. Parker, 2004. "Large-scale warming is not urban," Nature, Nature, vol. 432(7015), pages 290-290, November.
    7. Xiaojuan Lin & Min Xu & Chunxiang Cao & Ramesh P. Singh & Wei Chen & Hongrun Ju, 2018. "Land-Use/Land-Cover Changes and Their Influence on the Ecosystem in Chengdu City, China during the Period of 1992–2018," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junliang Qiu & Xiankun Yang & Bowen Cao & Zhilong Chen & Yuxuan Li, 2020. "Effects of Urbanization on Regional Extreme-Temperature Changes in China, 1960–2016," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    2. Qingxiang Li & Jiayou Huang & Zhihong Jiang & Liming Zhou & Peng Chu & Kaixi Hu, 2014. "Detection of urbanization signals in extreme winter minimum temperature changes over Northern China," Climatic Change, Springer, vol. 122(4), pages 595-608, February.
    3. Pengke Shen & Shuqing Zhao, 2021. "1/4 to 1/3 of observed warming trends in China from 1980 to 2015 are attributed to land use changes," Climatic Change, Springer, vol. 164(3), pages 1-19, February.
    4. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    5. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    6. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    7. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    8. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    9. Ross McKitrick, 2013. "Encompassing tests of socioeconomic signals in surface climate data," Climatic Change, Springer, vol. 120(1), pages 95-107, September.
    10. Taingaun Sourn & Sophak Pok & Phanith Chou & Nareth Nut & Dyna Theng & Phanna Rath & Manuel R. Reyes & P.V. Vara Prasad, 2021. "Evaluation of Land Use and Land Cover Change and Its Drivers in Battambang Province, Cambodia from 1998 to 2018," Sustainability, MDPI, vol. 13(20), pages 1-22, October.
    11. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    12. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    13. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    14. Lina Eklund & Abdulhakim Abdi & Mine Islar, 2017. "From Producers to Consumers: The Challenges and Opportunities of Agricultural Development in Iraqi Kurdistan," Land, MDPI, vol. 6(2), pages 1-14, June.
    15. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    16. Myeong Ja Kwak & Jong Kyu Lee & Sanghee Park & Yea Ji Lim & Handong Kim & Kyeong Nam Kim & Sun Mi Je & Chan Ryul Park & Su Young Woo, 2020. "Evaluation of the Importance of Some East Asian Tree Species for Refinement of Air Quality by Estimating Air Pollution Tolerance Index, Anticipated Performance Index, and Air Pollutant Uptake," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    17. Ge Shi & Peng Ye & Liang Ding & Agustin Quinones & Yang Li & Nan Jiang, 2019. "Spatio-Temporal Patterns of Land Use and Cover Change from 1990 to 2010: A Case Study of Jiangsu Province, China," IJERPH, MDPI, vol. 16(6), pages 1-19, March.
    18. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    19. Kai Jin & Fei Wang & Deliang Chen & Qiao Jiao & Lei Xia & Luuk Fleskens & Xingmin Mu, 2015. "Assessment of urban effect on observed warming trends during 1955–2012 over China: a case of 45 cities," Climatic Change, Springer, vol. 132(4), pages 631-643, October.
    20. Maria Silva Dias & Juliana Dias & Leila Carvalho & Edmilson Freitas & Pedro Silva Dias, 2013. "Changes in extreme daily rainfall for São Paulo, Brazil," Climatic Change, Springer, vol. 116(3), pages 705-722, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14510-:d:963681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.