IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i7d10.1007_s11069-025-07134-1.html
   My bibliography  Save this article

HEM NAEMP: a novel hybrid ensemble model for North Anatolian Fault zone earthquake magnitude prediction

Author

Listed:
  • Elif Özceylan

    (Istanbul Arel University)

  • Pınar Karadayı Ataş

    (Istanbul Arel University)

Abstract

The application of machine learning in predicting earthquake magnitudes is crucial due to its ability to process extensive data sets and identify intricate patterns, thereby enhancing the accuracy and timeliness of predictions. This capability is essential for improving readiness and relief techniques against seismic activities. This study introduces a novel hybrid ensemble model, the HEM NAEMP, specifically evolved for predicting earthquake magnitudes along the North Anatolian Fault zone. The model integrates data from both the North Anatolian and San Andreas fault zones-the latter selected due to its tectonic similarity-to develop a comprehensive dataset that includes newly extracted features. The novelty of this study lies in the combination of data from two different fault lines to create a new dataset, the extraction of novel features, and the development of a previously unused model leveraging this dataset and its features. The HEM NAEMP model employs a several of regression algorithms, including k-nearest neighbors, random forest, support vector machine, decision tree and extreme gradient boosting, to effectively predict earthquake magnitude. The evaluation metrics for the model are as follows: mean squared error (MSE) of 0.011, mean absolute error (MAE) of 0.064, root mean squared error (RMSE) of 0.108, mean absolute percentage error (MAPE) of 0.268, R Square $$(\text {R}^2)$$ ( R 2 ) of 0.92 and training time of 2.44 sec. These results are compared against those from a Long-Short Term Memory (LSTM), Convolutional Neural Network (CNN) and AutoRegressive Integrated Moving Average (ARIMA) models, demonstrating that HEM NAEMP has mostly lower error rates in MAE and MAPE and high score in $$\text {R}^2$$ R 2 , as well as reduced training time, thereby confirming its viability and efficiency.

Suggested Citation

  • Elif Özceylan & Pınar Karadayı Ataş, 2025. "HEM NAEMP: a novel hybrid ensemble model for North Anatolian Fault zone earthquake magnitude prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(7), pages 8387-8410, April.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07134-1
    DOI: 10.1007/s11069-025-07134-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07134-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07134-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javad N. Rashidi & Mehdi Ghassemieh, 2023. "Predicting the magnitude of injection-induced earthquakes using machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 545-570, August.
    2. Suzlyana Marhain & Ali Najah Ahmed & Muhammad Ary Murti & Pavitra Kumar & Ahmed El-Shafie, 2021. "Investigating the application of artificial intelligence for earthquake prediction in Terengganu," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 977-999, August.
    3. Yang Zhao & Denise Gorse, 2024. "Earthquake prediction from seismic indicators using tree-based ensemble learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2283-2309, February.
    4. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donghua Wang & Tianhui Fang, 2022. "Forecasting Crude Oil Prices with a WT-FNN Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
    2. Yang Zhao & Denise Gorse, 2024. "Earthquake prediction from seismic indicators using tree-based ensemble learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2283-2309, February.
    3. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    4. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    5. Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
    6. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    7. Lawrence, Michael & O'Connor, Marcus, 2000. "Sales forecasting updates: how good are they in practice?," International Journal of Forecasting, Elsevier, vol. 16(3), pages 369-382.
    8. Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
    9. Nik Dawson & Sacha Molitorisz & Marian-Andrei Rizoiu & Peter Fray, 2020. "Layoffs, Inequity and COVID-19: A Longitudinal Study of the Journalism Jobs Crisis in Australia from 2012 to 2020," Papers 2008.12459, arXiv.org, revised Feb 2021.
    10. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
    11. Sun Sun & Nan Luo & Erik Stenberg & Lars Lindholm & Klas-Göran Sahlén & Karl A. Franklin & Yang Cao, 2022. "Sequential Multiple Imputation for Real-World Health-Related Quality of Life Missing Data after Bariatric Surgery," IJERPH, MDPI, vol. 19(17), pages 1-16, August.
    12. En-Chih Chang, 2018. "Improving Performance for Full-Bridge Inverter of Wind Energy Conversion System Using a Fast and Efficient Control Technique," Energies, MDPI, vol. 11(2), pages 1-16, January.
    13. Yuze Lu & Hailong Zhang & Qiwen Guo, 2023. "Stock and market index prediction using Informer network," Papers 2305.14382, arXiv.org.
    14. Maria Tzitiridou-Chatzopoulou & Georgia Zournatzidou & Michael Kourakos, 2024. "Predicting Future Birth Rates with the Use of an Adaptive Machine Learning Algorithm: A Forecasting Experiment for Scotland," IJERPH, MDPI, vol. 21(7), pages 1-13, June.
    15. Dean W. Wichern & Benito E. Flores, 2005. "Evaluating forecasts: a look at aggregate bias and accuracy measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 433-451.
    16. Bruce G. S. Hardie & Peter S. Fader & Robert Zeithammer, 2003. "Forecasting new product trial in a controlled test market environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 391-410.
    17. Bunn, Derek W. & Taylor, James W., 2001. "Setting accuracy targets for short-term judgemental sales forecasting," International Journal of Forecasting, Elsevier, vol. 17(2), pages 159-169.
    18. Yoon, Sung Wook & Jeong, Suk Jae, 2015. "An alternative methodology for planning baggage carousel capacity expansion: A case study of Incheon International Airport," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 63-74.
    19. Jose, Victor Richmond R. & Winkler, Robert L., 2008. "Simple robust averages of forecasts: Some empirical results," International Journal of Forecasting, Elsevier, vol. 24(1), pages 163-169.
    20. Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07134-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.