IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i7d10.1007_s11069-025-07110-9.html
   My bibliography  Save this article

Deformation response and mechanism induced by rainfall of the Zhoujia landslide in Southwestern China

Author

Listed:
  • Shizhuang Chen

    (Hohai University
    Hohai University)

  • Weiya Xu

    (Hohai University
    Hohai University)

  • Xiaoyi Xu

    (Hohai University
    Hohai University)

  • Long Yan

    (Hohai University
    Hohai University)

  • Weiwei Wu

    (PowerChina Huadong Engineering Corporation Limited)

  • Wei-Chau Xie

    (University of Waterloo)

Abstract

Due to complex engineering geological and hydrological conditions and proximity to the dam site, the Zhoujia landslide has a potential instability risk, which poses a significant threat to the safety of the downstream hydropower station. In this study, a comprehensive assessment of the deformation characteristics and failure mechanisms of the landslide is conducted through field investigations, in situ monitoring data, and numerical simulations. The results indicate that the Zhoujia landslide is a giant ancient accumulation-landslide currently in the creep deformation stage. The deformations are mainly concentrated in Zone B1, which shows a tendency of frontal traction and rearward tearing and no sign of convergence yet. Meanwhile, Zones A and B2 show smaller and converging deformations. The correlation analysis reveals that rainfall is the primary triggering factor for landslide deformations, with a time delay of 1–2 months. Preliminary judgment based on numerical simulation of the landslide’s plastic zone indicates the Zhoujia landslide exhibits typical layered failure characteristics. Three potential failure patterns of Zone B1 are identified: sliding along the shallow gravel silt layer, sliding along the deep gravel silt layer, and overall sliding along the bottom sliding zone. The study’s findings will provide guidelines for early warning and engineering control of the Zhoujia landslide during the construction and after the completion of the Kala Hydropower Project.

Suggested Citation

  • Shizhuang Chen & Weiya Xu & Xiaoyi Xu & Long Yan & Weiwei Wu & Wei-Chau Xie, 2025. "Deformation response and mechanism induced by rainfall of the Zhoujia landslide in Southwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(7), pages 8039-8059, April.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07110-9
    DOI: 10.1007/s11069-025-07110-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07110-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07110-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeyaratnam, S., 1992. "Confidence intervals for the correlation coefficient," Statistics & Probability Letters, Elsevier, vol. 15(5), pages 389-393, December.
    2. John Carroll, 1961. "The nature of the data, or how to choose a correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 26(4), pages 347-372, December.
    3. Yongwei Li & Xianmin Wang & Hang Mao, 2020. "Influence of human activity on landslide susceptibility development in the Three Gorges area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2115-2151, December.
    4. Xiaohu Huang & Li Wang & Ruiqing Ye & Wu Yi & Haifeng Huang & Fei Guo & Guilin Huang, 2022. "Study on deformation characteristics and mechanism of reactivated ancient landslides induced by engineering excavation and rainfall in Three Gorges Reservoir area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1621-1647, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Liu & Zhen Wu & Huiwen Zhang, 2021. "Analysis of Changes in Landslide Susceptibility according to Land Use over 38 Years in Lixian County, China," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    2. Haipeng Zhou & Chenglin Mu & Bo Yang & Gang Huang & Jinpeng Hong, 2025. "Evaluating Landslide Hazard in Western Sichuan: Integrating Rainfall and Geospatial Factors Using a Coupled Information Value–Geographic Logistic Regression Model," Sustainability, MDPI, vol. 17(4), pages 1-30, February.
    3. Jihyun Yang & Jeffrey Shragge & Aaron J. Girard & Edgard Gonzales & Javier Ticona & Armando Minaya & Richard Krahenbuhl, 2023. "Seismic Characterization of a Landslide Complex: A Case History from Majes, Peru," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    4. Fanyu Zhang & Jianbing Peng & Xiaowei Huang & Hengxing Lan, 2021. "Hazard assessment and mitigation of non-seismically fatal landslides in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 785-804, March.
    5. Liying Sun & Bingjuan Ma & Liang Pei & Xiaohang Zhang & John L. Zhou, 2021. "The relationship of human activities and rainfall-induced landslide and debris flow hazards in Central China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 147-169, May.
    6. Jinming Zhang & Jianxi Qian & Yuefeng Lu & Xueyuan Li & Zhenqi Song, 2024. "Study on Landslide Susceptibility Based on Multi-Model Coupling: A Case Study of Sichuan Province, China," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    7. Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.
    8. Keith Hope, 1980. "A geometrical approach to sociological analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 14(2), pages 309-325, March.
    9. Mohib Ullah & Haijun Qiu & Wenchao Huangfu & Dongdong Yang & Yingdong Wei & Bingzhe Tang, 2025. "Integrated Machine Learning Approaches for Landslide Susceptibility Mapping Along the Pakistan–China Karakoram Highway," Land, MDPI, vol. 14(1), pages 1-29, January.
    10. Ohtani, Kazuhiro, 2000. "Bootstrapping R2 and adjusted R2 in regression analysis," Economic Modelling, Elsevier, vol. 17(4), pages 473-483, December.
    11. Florian Schuberth & Jörg Henseler & Theo K. Dijkstra, 2018. "Partial least squares path modeling using ordinal categorical indicators," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 9-35, January.
    12. Ahmed M. Youssef & Bosy A. El‑Haddad & Hariklia D. Skilodimou & George D. Bathrellos & Foroogh Golkar & Hamid Reza Pourghasemi, 2024. "Landslide susceptibility, ensemble machine learning, and accuracy methods in the southern Sinai Peninsula, Egypt: Assessment and Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14227-14258, December.
    13. Daniela-Emanuela Danacica, 2017. "Methodological and Applicative Problems of using Pearson Correlation Coefficient in the Analysis of Socio-Economic Variables," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 65(2), pages 148-163, February.
    14. Hao Chen & Hongpeng Lai & Man Huang & Gang Wang & Qiang Tang, 2022. "Failure mechanism and treatment measures of supporting structures at the portal for a shallow buried and asymmetrically loaded tunnel with small clear-distance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2283-2310, November.
    15. Bengt O. Muthã‰N, 1989. "Dichotomous Factor Analysis of Symptom Data," Sociological Methods & Research, , vol. 18(1), pages 19-65, August.
    16. Xin Wei & Lulu Zhang & Junyao Luo & Dongsheng Liu, 2021. "A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 471-497, October.
    17. Ivan Mervielde, 1977. "Methodological problems of research about attitude-behavior consistency," Quality & Quantity: International Journal of Methodology, Springer, vol. 11(3), pages 259-281, September.
    18. Bailey K. Fosdick & Adrian E. Raftery, 2012. "Estimating the Correlation in Bivariate Normal Data With Known Variances and Small Sample Sizes," The American Statistician, Taylor & Francis Journals, vol. 66(1), pages 34-41, February.
    19. Jansen, Nora & Hinz, Oliver & Deusser, Clemens & Strufe, Thorsten, 2021. "Is the Buzz on? – A Buzz Detection System for Viral Posts in Social Media," Journal of Interactive Marketing, Elsevier, vol. 56(C), pages 1-17.
    20. Hakan Tanyaş & Tolga Görüm & Dalia Kirschbaum & Luigi Lombardo, 2022. "Could road constructions be more hazardous than an earthquake in terms of mass movement?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 639-663, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:7:d:10.1007_s11069-025-07110-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.