IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i2d10.1007_s11069-022-05471-z.html
   My bibliography  Save this article

Failure mechanism and treatment measures of supporting structures at the portal for a shallow buried and asymmetrically loaded tunnel with small clear-distance

Author

Listed:
  • Hao Chen

    (Shaoxing University
    Shaoxing University
    Soochow University
    Chang’an University)

  • Hongpeng Lai

    (Chang’an University)

  • Man Huang

    (Shaoxing University
    Shaoxing University)

  • Gang Wang

    (Shaoxing University
    Shaoxing University)

  • Qiang Tang

    (Soochow University)

Abstract

The construction of a tunnel portal faces the challenges of complex geological conditions, such as shallow burial and asymmetrical loading. In addition, the adverse effects of factors such as the layout form of the tunnel must also be considered. Thus, the construction of portals has always been the focus of tunnel engineering. Under the coupling of multiple adverse factors, such as complex geological conditions and special layout form, the tunnel portal is prone to excessive deformation, supporting structural cracking, and even collapse during excavation. In this study, a shallow buried and asymmetrically loaded tunnel with a small clear-distance in northwest China was considered as an engineering case. To address the distresses of slope instability, peeling off and block falling of primary support concrete, and cracking of secondary lining concrete in the tunnel portal construction, combined with field investigations, statistical analysis, numerical simulation, and deformation monitoring, the failure mechanism of supporting structures was deeply studied and corresponding treatment measures were proposed. The research results indicated that loose and broken gravel soil in the shallow buried section, asymmetrical loading, surface water infiltration, and short construction spacing between the two tunnels were the main triggers of supporting structures failure. Affected by topographic bias, the loose load generated by the surrounding rock on the deeply buried side squeezed the entire tunnel to the shallow buried side after portal excavation. This deformation trend became more significant after the gravel soil deteriorated by water immersion. The retaining wall produced a clockwise rotation deformation around the wall corner in the process of limiting the tunnel deviation, and the local wall body cracked owing to excessive tensile stress. The primary support concrete and secondary lining concrete produced excessive asymmetrical deformation because of significant asymmetrical loading. Concrete with excessive deformation was cracked by obvious tensile or shear stresses. The subsequent tunnel excavation had a significant negative impact on the stability of the prior tunnel. Combining the failure mechanism of the supporting structures and the characteristics of the continuous development of cracks, the treatment measures of ‘stabilize the stratum first and then treat the cracks’ were proposed, including the backfilling and tamping the shallow buried side at tunnel portal, reinforcing the interlaid rock by ground surface grouting, setting intercepting ditch at the slope top, and staggering a certain safe excavation distance between the following tunnel and the prior tunnel. Field monitoring and patrol inspection results indicated that the proposed treatment measures achieved the expected results. The research results can provide corresponding construction experience and suggestions for similar projects in future.

Suggested Citation

  • Hao Chen & Hongpeng Lai & Man Huang & Gang Wang & Qiang Tang, 2022. "Failure mechanism and treatment measures of supporting structures at the portal for a shallow buried and asymmetrically loaded tunnel with small clear-distance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2283-2310, November.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:2:d:10.1007_s11069-022-05471-z
    DOI: 10.1007/s11069-022-05471-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05471-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05471-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wan-li Xie & Qianyi Guo & Jason Y. Wu & Ping Li & Hui Yang & Maosheng Zhang, 2021. "Analysis of loess landslide mechanism and numerical simulation stabilization on the Loess Plateau in Central China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 805-827, March.
    2. Yongxing Zhang & Maoqi Yuan & Weihua Lu & Jian Zhang, 2022. "Cause investigation of ground sliding during tunneling in sloping and stratified stratum," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1421-1430, March.
    3. Xiang Duan & Tian-shun Hou & Xiao-dong Jiang, 2021. "Study on stability of exit slope of Chenjiapo tunnel under extreme rainstorm conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1387-1411, June.
    4. Xingkai Wang & Leibo Song & Caichu Xia & Guansheng Han & Zheming Zhu, 2021. "Nonlinear Elasto-Visco-Plastic Creep Behavior and New Creep Damage Model of Dolomitic Limestone Subjected to Cyclic Incremental Loading and Unloading," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    5. Xiaohu Huang & Li Wang & Ruiqing Ye & Wu Yi & Haifeng Huang & Fei Guo & Guilin Huang, 2022. "Study on deformation characteristics and mechanism of reactivated ancient landslides induced by engineering excavation and rainfall in Three Gorges Reservoir area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1621-1647, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiqi Liu & Gang Wang & Zhijie Wen & Dongxing Wang & Leibo Song & Manqing Lin & Hao Chen, 2023. "The Transient Unloading Response of a Deep-Buried Single Fracture Tunnel Based on the Particle Flow Method," Sustainability, MDPI, vol. 15(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Zhu & Kejun Wen & Ruiming Tong & Mingdong Li, 2022. "Dynamic Shear Strength Characteristics of Lightweight Sand-EPS Soil," Sustainability, MDPI, vol. 14(12), pages 1-9, June.
    2. Xinbo Zhao & Heng Chen & Jian Lv & Xiaohong He & Yiwei Qin & Keming Sun, 2023. "Triaxial Creep Damage Model for Salt Rock Based on Fractional Derivative," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    3. Zhiye Wang & Chuanming Ma & Yang Qiu & Hanxiang Xiong & Minghong Li, 2022. "Refined Zoning of Landslide Susceptibility: A Case Study in Enshi County, Hubei, China," IJERPH, MDPI, vol. 19(15), pages 1-22, August.
    4. Tian-shun Hou & Guang-li Xu & Da-qian Zhang & Hao-yu Liu, 2022. "Stability analysis of Gongjiacun landslide in the three Gorges Reservoir area under the action of reservoir water level fluctuation and rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1647-1683, November.
    5. Qiming Zhang & Enyuan Wang & Zeng Ding, 2022. "Research on the Creep Model of Deep Coal Roadway and Its Numerical Simulation Reproduction," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    6. Wangwang Zhou & Xulin Xu & Xiaoqing Li & Shiyun Li, 2023. "Analysis of the Interaction Damage Mechanism and Treatment Measures for an Underpass Landslide Tunnel: A Case from Southwest China," Sustainability, MDPI, vol. 15(14), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:2:d:10.1007_s11069-022-05471-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.