IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i1p172-d1567660.html
   My bibliography  Save this article

Integrated Machine Learning Approaches for Landslide Susceptibility Mapping Along the Pakistan–China Karakoram Highway

Author

Listed:
  • Mohib Ullah

    (Shaanxi Key Laboratory of Earth Surface and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China)

  • Haijun Qiu

    (Shaanxi Key Laboratory of Earth Surface and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Institute of Earth Surface System and Hazards, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China)

  • Wenchao Huangfu

    (Shaanxi Key Laboratory of Earth Surface and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China)

  • Dongdong Yang

    (Shaanxi Key Laboratory of Earth Surface and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China)

  • Yingdong Wei

    (Shaanxi Key Laboratory of Earth Surface and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China)

  • Bingzhe Tang

    (Shaanxi Key Laboratory of Earth Surface and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China)

Abstract

The effectiveness of data-driven landslide susceptibility mapping relies on data integrity and advanced geospatial analysis; however, selecting the most suitable method and identifying key regional factors remains a challenging task. To address this, this study assessed the performance of six machine learning models, including Convolutional Neural Networks (CNNs), Random Forest (RF), Categorical Boosting (CatBoost), their CNN-based hybrid models (CNN+RF and CNN+CatBoost), and a Stacking Ensemble (SE) combining CNN, RF, and CatBoost in mapping landslide susceptibility along the Karakoram Highway in northern Pakistan. Twelve geospatial factors were examined, categorized into Topography/Geomorphology, Land Cover/Vegetation, Geology, Hydrology, and Anthropogenic Influence. A detailed landslide inventory of 272 occurrences was compiled to train the models. The proposed stacking ensemble and hybrid models improve landslide susceptibility modeling, with the stacking ensemble achieving an AUC of 0.91. Hybrid modeling enhances accuracy, with CNN–RF boosting RF’s AUC from 0.85 to 0.89 and CNN–CatBoost increasing CatBoost’s AUC from 0.87 to 0.90. Chi-square (χ 2 ) values (9.8–21.2) and p -values (<0.005) confirm statistical significance across models. This study identifies approximately 20.70% of the area as from high to very high risk, with the SE model excelling in detecting high-risk zones. Key factors influencing landslide susceptibility showed slight variations across the models, while multicollinearity among variables remained minimal. The proposed modeling approach reduces uncertainties, enhances prediction accuracy, and supports decision-makers in implementing effective landslide mitigation strategies.

Suggested Citation

  • Mohib Ullah & Haijun Qiu & Wenchao Huangfu & Dongdong Yang & Yingdong Wei & Bingzhe Tang, 2025. "Integrated Machine Learning Approaches for Landslide Susceptibility Mapping Along the Pakistan–China Karakoram Highway," Land, MDPI, vol. 14(1), pages 1-29, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:172-:d:1567660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quinn McNemar, 1947. "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, Springer;The Psychometric Society, vol. 12(2), pages 153-157, June.
    2. Altaf Hussain & Susanne Schmidt & Marcus Nüsser, 2023. "Dynamics of Mountain Urbanisation: Evidence from the Trans-Himalayan Town of Kargil, Ladakh, India," Land, MDPI, vol. 12(4), pages 1-16, April.
    3. Siti Norsakinah Selamat & Nuriah Abd Majid & Mohd Raihan Taha & Ashraf Osman, 2022. "Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia," Land, MDPI, vol. 11(6), pages 1-21, June.
    4. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    5. Patricia Arrogante-Funes & Adrián G. Bruzón & Fátima Arrogante-Funes & Rocío N. Ramos-Bernal & René Vázquez-Jiménez, 2021. "Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment," IJERPH, MDPI, vol. 18(22), pages 1-21, November.
    6. Yiru Jia & Jifu Liu & Lanlan Guo & Zhifei Deng & Jiaoyang Li & Hao Zheng, 2021. "Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    7. Peng Ye & Bin Yu & Wenhong Chen & Kan Liu & Longzhen Ye, 2022. "Rainfall-induced landslide susceptibility mapping using machine learning algorithms and comparison of their performance in Hilly area of Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 965-995, September.
    8. Yongwei Li & Xianmin Wang & Hang Mao, 2020. "Influence of human activity on landslide susceptibility development in the Three Gorges area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2115-2151, December.
    9. Mohib Ullah & Bingzhe Tang & Wenchao Huangfu & Dongdong Yang & Yingdong Wei & Haijun Qiu, 2024. "Machine Learning-Driven Landslide Susceptibility Mapping in the Himalayan China–Pakistan Economic Corridor Region," Land, MDPI, vol. 13(7), pages 1-22, July.
    10. Zhiquan Yang & Lai Wei & Yuqing Liu & Na He & Jie Zhang & Hanhua Xu, 2023. "Discussion on the Relationship between Debris Flow Provenance Particle Characteristics, Gully Slope, and Debris Flow Types along the Karakoram Highway," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uttam Bandyopadhyay & Atanu Biswas & Shirsendu Mukherjee, 2009. "Adaptive two-treatment two-period crossover design for binary treatment responses incorporating carry-over effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 13-33, March.
    2. Jie Liu & Zhen Wu & Huiwen Zhang, 2021. "Analysis of Changes in Landslide Susceptibility according to Land Use over 38 Years in Lixian County, China," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    3. Preety Srivastava & Xueyan Zhao, 2010. "What Do the Bingers Drink? Micro‐Unit Evidence on Negative Externalities and Drinker Characteristics of Alcohol Consumption by Beverage Types," Economic Papers, The Economic Society of Australia, vol. 29(2), pages 229-250, June.
    4. Haipeng Zhou & Chenglin Mu & Bo Yang & Gang Huang & Jinpeng Hong, 2025. "Evaluating Landslide Hazard in Western Sichuan: Integrating Rainfall and Geospatial Factors Using a Coupled Information Value–Geographic Logistic Regression Model," Sustainability, MDPI, vol. 17(4), pages 1-30, February.
    5. Holger Schwender & Margaret A. Taub & Terri H. Beaty & Mary L. Marazita & Ingo Ruczinski, 2012. "Rapid Testing of SNPs and Gene–Environment Interactions in Case–Parent Trio Data Based on Exact Analytic Parameter Estimation," Biometrics, The International Biometric Society, vol. 68(3), pages 766-773, September.
    6. Matysková, Ludmila & Rogers, Brian & Steiner, Jakub & Sun, Keh-Kuan, 2020. "Habits as adaptations: An experimental study," Games and Economic Behavior, Elsevier, vol. 122(C), pages 391-406.
    7. André, Kévin, 2013. "Applying the Capability Approach to the French Education System: An Assessment of the "Pourquoi pas moi ?"," ESSEC Working Papers WP1316, ESSEC Research Center, ESSEC Business School.
    8. Irina Zrnić Novaković & Dean Ajduković & Helena Bakić & Camila Borges & Margarida Figueiredo-Braga & Annett Lotzin & Xenia Anastassiou-Hadjicharalambous & Chrysanthi Lioupi & Jana Darejan Javakhishvil, 2023. "Shaped by the COVID-19 pandemic: Psychological responses from a subjective perspective–A longitudinal mixed-methods study across five European countries," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-32, April.
    9. Ruiz-Frau, A. & Krause, T. & Marbà, N., 2018. "The use of sociocultural valuation in sustainable environmental management," Ecosystem Services, Elsevier, vol. 29(PA), pages 158-167.
    10. Jihyun Yang & Jeffrey Shragge & Aaron J. Girard & Edgard Gonzales & Javier Ticona & Armando Minaya & Richard Krahenbuhl, 2023. "Seismic Characterization of a Landslide Complex: A Case History from Majes, Peru," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    11. AlMalki, Hameeda A. & Durugbo, Christopher M., 2023. "Evaluating critical institutional factors of Industry 4.0 for education reform," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    12. Abhik Saha & Vasanta Govind Kumar Villuri & Ashutosh Bhardwaj, 2022. "Development and Assessment of GIS-Based Landslide Susceptibility Mapping Models Using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India," Land, MDPI, vol. 11(10), pages 1-27, October.
    13. Guevara, C. Angelo & Fukushi, Mitsuyoshi, 2016. "Modeling the decoy effect with context-RUM Models: Diagrammatic analysis and empirical evidence from route choice SP and mode choice RP case studies," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 318-337.
    14. Melo, Grace & Palma, Marco A. & Ribera, Luis A., 2024. "Are experts overoptimistic about the success of food market labeling information?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343870, Agricultural and Applied Economics Association.
    15. Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.
    16. Alexandra I. Khalyasmaa & Pavel V. Matrenin & Stanislav A. Eroshenko & Vadim Z. Manusov & Andrey M. Bramm & Alexey M. Romanov, 2022. "Data Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    17. Arnaldo Rabello de Aguiar Vallim Filho & Daniel Farina Moraes & Marco Vinicius Bhering de Aguiar Vallim & Leilton Santos da Silva & Leandro Augusto da Silva, 2022. "A Machine Learning Modeling Framework for Predictive Maintenance Based on Equipment Load Cycle: An Application in a Real World Case," Energies, MDPI, vol. 15(10), pages 1-41, May.
    18. Alireza Taheri Dehkordi & Mohammad Javad Valadan Zoej & Hani Ghasemi & Ebrahim Ghaderpour & Quazi K. Hassan, 2022. "A New Clustering Method to Generate Training Samples for Supervised Monitoring of Long-Term Water Surface Dynamics Using Landsat Data through Google Earth Engine," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    19. Lahtinen, Tuomas J. & Hämäläinen, Raimo P., 2016. "Path dependence and biases in the even swaps decision analysis method," European Journal of Operational Research, Elsevier, vol. 249(3), pages 890-898.
    20. Mei-Cheng Wang & Yuxin Zhu, 2022. "Bias correction via outcome reassignment for cross-sectional data with binary disease outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 659-674, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:172-:d:1567660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.