IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i12d10.1007_s11069-025-07371-4.html
   My bibliography  Save this article

Comparative landslide susceptibility mapping using local inventories: a case study from Trabzon, Türkiye

Author

Listed:
  • Şevki Öztürk

    (Çankaya University)

Abstract

This paper presents a novel approach to landslide susceptibility mapping by integrating two landslide inventories prepared by different national agencies of Türkiye (MTA and AFAD) in the Trabzon region. By leveraging these different inventories, the study aims to offer a more comprehensive understanding of landslide risks, addressing limitations in previous susceptibility models that typically rely on single inventory sources. Employing the frequency ratio method, the paper generates susceptibility maps from each database to examine the influence of landslides across various environmental factors. Additionally, an Analytical Hierarchy Process (AHP)-based map, incorporating environmental characteristics, literature, and expert opinions, is developed to provide a third perspective, independent of historical landslide data. The results indicate that AHP model classifies approximately 19.20% of the study area as very high and high susceptibility. In contrast, the MTA and AFAD models assign only 12.40% and 8.80% to high and very high categories, with most areas falling into low to moderate susceptibility. Comparisons with the Global Landslide Hazard Map further highlight the strengths and limitations of localized versus global assessments. This study contributes to the field by demonstrating the benefits of a dual-inventory approach, enhancing the precision of landslide susceptibility maps and providing valuable insights for disaster risk management and sustainable land-use planning.

Suggested Citation

  • Şevki Öztürk, 2025. "Comparative landslide susceptibility mapping using local inventories: a case study from Trabzon, Türkiye," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(12), pages 14655-14676, July.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:12:d:10.1007_s11069-025-07371-4
    DOI: 10.1007/s11069-025-07371-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07371-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07371-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yılmaz, Kutay & Dinçer, Ali Ersin & Ayhan, Elif N., 2023. "Exploring flood and erosion risk indices for optimal solar PV site selection and assessing the influence of topographic resolution," Renewable Energy, Elsevier, vol. 216(C).
    2. Faraz S. Tehrani & Michele Calvello & Zhongqiang Liu & Limin Zhang & Suzanne Lacasse, 2022. "Machine learning and landslide studies: recent advances and applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1197-1245, November.
    3. Mowen Xie & Tetsuro Esaki & Guoyun Zhou, 2004. "GIS-Based Probabilistic Mapping of Landslide Hazard Using a Three-Dimensional Deterministic Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 265-282, October.
    4. Suvam Das & Shantanu Sarkar & Debi Prasanna Kanungo, 2023. "A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 23-72, January.
    5. Rui Fagundes Silva & Rui Marques & José Luís Zêzere, 2024. "Spatial distribution, temporal trends and impact of landslides on São Miguel Island from 1900 to 2020 based on an analysis of the Azores historical natural hazards database," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2617-2638, February.
    6. Ye Zheng & Yazhou Xie & Xuejiao Long, 2021. "A comprehensive review of Bayesian statistics in natural hazards engineering," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 63-91, August.
    7. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    8. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    9. Ram Ray & Jennifer Jacobs & Thomas Ballestero, 2011. "Regional landslide susceptibility: spatiotemporal variations under dynamic soil moisture conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1317-1337, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    2. Gökhan Demir, 2018. "Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Suşehri Town, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 133-154, May.
    3. Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    4. Kamila Hodasová & Martin Bednarik, 2021. "Effect of using various weighting methods in a process of landslide susceptibility assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 481-499, January.
    5. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    6. Guido Paliaga & Martino Terrone & Nicola Bazzurro & Alessandra Marchese & Francesco Faccini, 2025. "Rainfall-Induced Shallow Landslide Susceptibility for Risk Management of Underground Services in a Mediterranean Metropolitan City," Land, MDPI, vol. 14(11), pages 1-25, October.
    7. Cahio Guimarães Seabra Eiras & Juliana Ribeiro Gonçalves de Souza & Renata Delicio Andrade de Freitas & César Falcão Barella & Tiago Martins Pereira, 2021. "Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1427-1442, June.
    8. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
    9. Silvana Moragues & María Gabriela Lenzano & Mario Lanfri & Stella Moreiras & Esteban Lannutti & Luis Lenzano, 2021. "Analytic hierarchy process applied to landslide susceptibility mapping of the North Branch of Argentino Lake, Argentina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 915-941, January.
    10. Sara Beheshtifar, 2023. "Identification of landslide-prone zones using a GIS-based multi-criteria decision analysis and region-growing algorithm in uncertain conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1475-1497, January.
    11. Santos Daniel Chicas & Heng Li & Nobuya Mizoue & Tetsuji Ota & Yan Du & Márk Somogyvári, 2024. "Landslide susceptibility mapping core-base factors and models’ performance variability: a systematic review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12573-12593, November.
    12. Quynh Duy Bui & Hang Ha & Dong Thanh Khuc & Dinh Quoc Nguyen & Jason von Meding & Lam Phuong Nguyen & Chinh Luu, 2023. "Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2283-2309, March.
    13. Emmanouil Psomiadis & Andreas Papazachariou & Konstantinos X. Soulis & Despoina-Simoni Alexiou & Ioannis Charalampopoulos, 2020. "Landslide Mapping and Susceptibility Assessment Using Geospatial Analysis and Earth Observation Data," Land, MDPI, vol. 9(5), pages 1-26, April.
    14. Antonio Ganga & Mario Elia & Ersilia D’Ambrosio & Simona Tripaldi & Gian Franco Capra & Francesco Gentile & Giovanni Sanesi, 2022. "Assessing Landslide Susceptibility by Coupling Spatial Data Analysis and Logistic Model," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    15. Konstantinos, Ioannou & Georgios, Tsantopoulos & Garyfalos, Arabatzis, 2019. "A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece," Energy Policy, Elsevier, vol. 132(C), pages 232-246.
    16. Masanori Kohno & Yuki Higuchi & Yusuke Ono, 2023. "Evaluating earthquake-induced widespread slope failure hazards using an AHP-GIS combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1485-1512, March.
    17. Batmyagmar Dashbold & L. Sebastian Bryson & Matthew M. Crawford, 2023. "Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 235-265, March.
    18. Qing Yang & Zhanqiang Chang & Chou Xie & Chaoyong Shen & Bangsen Tian & Haoran Fang & Yihong Guo & Yu Zhu & Daoqin Zhou & Xin Yao & Guanwen Chen & Tao Xie, 2023. "Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China," Land, MDPI, vol. 12(7), pages 1-34, July.
    19. Shasha Chai & Fanjie Kong & Yu Liu & Mengyin Liang & Quanfeng Liu, 2024. "Photovoltaic Solar Farms Site Selection through “Policy Constraints–Construction Suitability”: A Case Study of Qilian County, Qinghai," Land, MDPI, vol. 13(9), pages 1-20, September.
    20. Mehdi Bashiri & Mohammad Reza Rahdari & Francisco Serrano-Bernardo & Jesús Rodrigo-Comino & Andrés Rodríguez-Seijo, 2025. "Defining a Method for Mapping Aeolian Sand Transport Susceptibility Using Bivariate Statistical and Machine Learning Methods—A Case Study of the Seqale Watershed, Eastern Iran," Sustainability, MDPI, vol. 17(18), pages 1-22, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:12:d:10.1007_s11069-025-07371-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.