IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i7p1444-d1198115.html
   My bibliography  Save this article

Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China

Author

Listed:
  • Qing Yang

    (China Siwei Surveying and Mapping Technology Co., Ltd., Beijing 100086, China)

  • Zhanqiang Chang

    (College of Resource, Environment &Tourism, Capital Normal University, Beijing 100048, China
    Key Lab of 3D Information Acquisition of Education Ministry of China, Beijing 100048, China)

  • Chou Xie

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, Deqing 313200, China)

  • Chaoyong Shen

    (The Third Surveying and Mapping Institute of Guizhou Province, Guiyang 550004, China)

  • Bangsen Tian

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, Deqing 313200, China)

  • Haoran Fang

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yihong Guo

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China)

  • Yu Zhu

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China)

  • Daoqin Zhou

    (The Third Surveying and Mapping Institute of Guizhou Province, Guiyang 550004, China)

  • Xin Yao

    (The Third Surveying and Mapping Institute of Guizhou Province, Guiyang 550004, China)

  • Guanwen Chen

    (The Third Surveying and Mapping Institute of Guizhou Province, Guiyang 550004, China)

  • Tao Xie

    (The Third Surveying and Mapping Institute of Guizhou Province, Guiyang 550004, China)

Abstract

Landslide susceptibility maps (LSMs) play an important role in landslide hazard risk assessments, urban planning, and land resource management. While states of motion and dynamic factors are critical in the landslide formation process, these factors have not received due attention in existing LSM-generation research. In this study, we proposed a valuable method for dynamically updating and refining LSMs by combining soil moisture products with Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) data. Based on a landslide inventory, we used time-series soil moisture data to construct an index system for evaluating landslide susceptibility. MT-InSAR technology was applied to invert the displacement time series. Furthermore, the surface deformation rate was projected in the direction of the steepest slope, and the data was resampled to a spatial resolution consistent with that of the LSM to update the generated LSM. The results showed that varying soil moisture conditions were accompanied by dynamic landslide susceptibility. A total of 22% of the analyzed pixels underwent significant susceptibility changes (either increases or decreases) following the updating and refining processes incorporating soil moisture and MT-InSAR compared to the LSMs derived based only on static factors. The relative landslide density index obtained based on actual landslides and the analyses of Dongfeng, Haila town, and Dajie township confirmed the improved slow landslide prediction reliability resulting from the reduction of the false alarm and omission rates.

Suggested Citation

  • Qing Yang & Zhanqiang Chang & Chou Xie & Chaoyong Shen & Bangsen Tian & Haoran Fang & Yihong Guo & Yu Zhu & Daoqin Zhou & Xin Yao & Guanwen Chen & Tao Xie, 2023. "Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China," Land, MDPI, vol. 12(7), pages 1-34, July.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1444-:d:1198115
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/7/1444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/7/1444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniela Piacentini & Stefano Devoto & Matteo Mantovani & Alessandro Pasuto & Mariacristina Prampolini & Mauro Soldati, 2015. "Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): an example from the northwestern coast of Malta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 681-697, August.
    2. Ram Ray & Jennifer Jacobs & Thomas Ballestero, 2011. "Regional landslide susceptibility: spatiotemporal variations under dynamic soil moisture conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1317-1337, December.
    3. Chen Jun & Yifang Ban & Songnian Li, 2014. "Open access to Earth land-cover map," Nature, Nature, vol. 514(7523), pages 434-434, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianning Zhang & Zhu Xu, 2021. "Fully Portraying Patch Area Scaling with Resolution: An Analytics and Descriptive Statistics-Combined Approach," Land, MDPI, vol. 10(3), pages 1-21, March.
    2. Hao Wang & Huimin Yan & Yunfeng Hu & Yue Xi & Yichen Yang, 2022. "Consistency and Accuracy of Four High-Resolution LULC Datasets—Indochina Peninsula Case Study," Land, MDPI, vol. 11(5), pages 1-19, May.
    3. Jingyi Wang & Chen Weng & Zhen Wang & Chunming Li & Tingting Wang, 2022. "What Constitutes the High-Quality Soundscape in Human Habitats? Utilizing a Random Forest Model to Explore Soundscape and Its Geospatial Factors Behind," IJERPH, MDPI, vol. 19(21), pages 1-23, October.
    4. Lidia Selmi & Thais S. Canesin & Ritienne Gauci & Paulo Pereira & Paola Coratza, 2022. "Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    5. Gang Lin & Dong Jiang & Xiang Li & Jingying Fu, 2022. "Accounting for Carbon Sink and Its Dominant Influencing Factors in Chinese Ecological Space," Land, MDPI, vol. 11(10), pages 1-19, October.
    6. Hao Wang & Yunfeng Hu, 2021. "Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    7. Charalampos Kontoes & Constantinos Loupasakis & Ioannis Papoutsis & Stavroula Alatza & Eleftheria Poyiadji & Athanassios Ganas & Christina Psychogyiou & Mariza Kaskara & Sylvia Antoniadi & Natalia Spa, 2021. "Landslide Susceptibility Mapping of Central and Western Greece, Combining NGI and WoE Methods, with Remote Sensing and Ground Truth Data," Land, MDPI, vol. 10(4), pages 1-25, April.
    8. Yunchen Wang & Boyan Li, 2022. "The Spatial Disparities of Land-Use Efficiency in Mainland China from 2000 to 2015," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    9. Zhang, Shaoyao & Deng, Wei & Zhang, Hao & Wang, Zhanyun, 2023. "Identification and analysis of transitional zone patterns along urban-rural-natural landscape gradients: An application to China’s southwest mountains," Land Use Policy, Elsevier, vol. 129(C).
    10. Chaoqing Huang & Chao He & Qian Wu & MinhThu Nguyen & Song Hong, 2023. "Classification of the Land Cover of a Megacity in ASEAN Using Two Band Combinations and Three Machine Learning Algorithms: A Case Study in Ho Chi Minh City," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    11. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    12. Ziqian Kang & Shuo Wang & Ling Xu & Fenglin Yang & Shushen Zhang, 2021. "Suitability assessment of urban land use in Dalian, China using PNN and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 913-936, March.
    13. Myroslava Lesiv & Anatoly Shvidenko & Dmitry Schepaschenko & Linda See & Steffen Fritz, 2019. "A spatial assessment of the forest carbon budget for Ukraine," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 985-1006, August.
    14. Feng Zhang & Xiasong Hu & Jing Zhang & Chengyi Li & Yupeng Zhang & Xilai Li, 2022. "Change in Alpine Grassland NPP in Response to Climate Variation and Human Activities in the Yellow River Source Zone from 2000 to 2020," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    15. I. P. Kovács & T. Bugya & Sz. Czigány & M. Defilippi & D. Lóczy & P. Riccardi & L. Ronczyk & P. Pasquali, 2019. "How to avoid false interpretations of Sentinel-1A TOPSAR interferometric data in landslide mapping? A case study: recent landslides in Transdanubia, Hungary," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 693-712, March.
    16. Baifei Ren & Keunhyun Park & Anil Shrestha & Jun Yang & Melissa McHale & Weilan Bai & Guangyu Wang, 2022. "Impact of Human Disturbances on the Spatial Heterogeneity of Landscape Fragmentation in Qilian Mountain National Park, China," Land, MDPI, vol. 11(11), pages 1-26, November.
    17. Dongchuan Wang & Hua Chai & Zhiheng Wang & Kangjian Wang & Hongyi Wang & Hui Long & Jianshe Gao & Aoze Wei & Sirun Wang, 2022. "Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    18. Zhibo Lu & Qian Song & Jianyun Zhao, 2023. "Evolution of Landscape Ecological Risk and Identification of Critical Areas in the Yellow River Source Area Based on LUCC," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    19. Xuebin Zhang & Litang Yao & Jun Luo & Wenjuan Liang, 2022. "Exploring Changes in Land Use and Landscape Ecological Risk in Key Regions of the Belt and Road Initiative Countries," Land, MDPI, vol. 11(6), pages 1-22, June.
    20. Lei Wang & Aifeng Lv, 2022. "Identification and Diagnosis of Transboundary River Basin Water Management in China and Neighboring Countries," Sustainability, MDPI, vol. 14(19), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1444-:d:1198115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.