IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i10p1586-d1488771.html
   My bibliography  Save this article

Construction of Landscape Ecological Risk Collaborative Management Network in Mountainous Cities—A Case Study of Zhangjiakou

Author

Listed:
  • Mu Li

    (School of Public Management, Tianjin University of Commerce, Tianjin 300134, China)

  • Lingli Zhang

    (Beijing Penta Color Gold Soil Information & Technology Co., Ltd., Beijing 100193, China)

  • Yuanyuan Chen

    (School of Public Management, Tianjin University of Commerce, Tianjin 300134, China)

  • Shuangliang Liu

    (School of Public Management, Tianjin University of Commerce, Tianjin 300134, China)

  • Mingyao Cai

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

  • Qiangqiang Sun

    (College of Land Science and Technology, China Agricultural University, Beijing 100193, China)

Abstract

The prevention of ecological risks is a critical determinant influencing sustainable development. Driven by rapid socio-economic development, the ecosystems of mountainous cities within agro-pastoral transition zones are increasingly vulnerable to complex disturbances, constituting a significant threat to sustainable development and human well-being. To help achieve sustainable development, it is essential to conduct research on addressing and mitigating ecological risks from the perspective of collaborative management networks in mountainous cities. Taking Zhangjiakou as the study area, this paper employed the land use transfer matrix and standard deviation ellipse methods to analyze the dynamic land use changes. Additionally, using Fragstats 4,2 to calculate the landscape indices with land use data, this paper evaluated the landscape ecological risk (LER) from 2000 to 2020. Furthermore, the social network analysis (SNA) method was utilized to explore the spatial correlation characteristics of the LER. The findings indicate that: (1) Cultivated land and grassland were the predominant land use types in Zhangjiakou. During 2000–2020, Zhangjiakou experienced significant changes in land use, dominated by the transfer among cultivated land, forestland, and grassland. It indicated that the issue of unstable ecological land use continued to exist. Affected by human activities, construction land showed a consistent upward trend, primarily concentrated in the urban built-up areas and areas along the Jing-Zhang Railway. (2) The LER of Zhangjiakou was predominantly characterized by low risk, medium risk, and high risk levels. In the transitional areas and foothills, the LER was relatively higher. During 2000–2020, Zhangjiakou showed a declining trend of LER. This suggested that the ecological protection policies in Zhangjiakou were effective, leading to an improvement in the local ecological environment. (3) The LER in Zhangjiakou demonstrated a spatial clustering pattern that exhibited an upward trend, which was supported by both spatial autocorrelation and the SNA analysis. In the LER collaborative management network, Xuanhua, Qiaodong, Qiaoxi, Wanquan and Zhangbei consistently upheld pivotal roles. Based on the number of inward and outward connections, 16 counties in Zhangjiakou were classified into four categories and three zones accompanied by corresponding recommendations. The findings of this study can serve as a valuable reference for subsequent landscape pattern optimization and ecological restoration in Zhangjiakou.

Suggested Citation

  • Mu Li & Lingli Zhang & Yuanyuan Chen & Shuangliang Liu & Mingyao Cai & Qiangqiang Sun, 2024. "Construction of Landscape Ecological Risk Collaborative Management Network in Mountainous Cities—A Case Study of Zhangjiakou," Land, MDPI, vol. 13(10), pages 1-28, September.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1586-:d:1488771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/10/1586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/10/1586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Chao & Xu, Yueqing & Lu, Xinhai & Han, Jing, 2021. "Trade-offs and driving forces of land use functions in ecologically fragile areas of northern Hebei Province: Spatiotemporal analysis," Land Use Policy, Elsevier, vol. 104(C).
    2. Zihui Li & Kangwen Zhu & Dan Song & Dongjie Guan & Jiameng Cao & Xiangyuan Su & Yanjun Zhang & Ya Zhang & Yong Ba & Haoyu Wang, 2023. "Analysis of Spatial Relationship Based on Ecosystem Services and Ecological Risk Index in the Counties of Chongqing," Land, MDPI, vol. 12(10), pages 1-19, September.
    3. Chen Jun & Yifang Ban & Songnian Li, 2014. "Open access to Earth land-cover map," Nature, Nature, vol. 514(7523), pages 434-434, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianning Zhang & Zhu Xu, 2021. "Fully Portraying Patch Area Scaling with Resolution: An Analytics and Descriptive Statistics-Combined Approach," Land, MDPI, vol. 10(3), pages 1-21, March.
    2. Hao Wang & Huimin Yan & Yunfeng Hu & Yue Xi & Yichen Yang, 2022. "Consistency and Accuracy of Four High-Resolution LULC Datasets—Indochina Peninsula Case Study," Land, MDPI, vol. 11(5), pages 1-19, May.
    3. Bao Meng & Shaoyao Zhang & Wei Deng & Li Peng & Peng Zhou & Hao Zhang, 2023. "Identification and Analysis of Territorial Spatial Utilization Conflicts in Yibin Based on Multidimensional Perspective," Land, MDPI, vol. 12(5), pages 1-20, May.
    4. Ling Cheng & Haiyang Cui & Tian Liang & Dan Huang & Yuanxia Su & Zhiyong Zhang & Chuanhao Wen, 2023. "Study on the Trade-Off Synergy Relationship of “Production-Living-Ecological” Functions in Chinese Counties: A Case Study of Chongqing Municipality," Land, MDPI, vol. 12(5), pages 1-27, May.
    5. Jingyi Wang & Chen Weng & Zhen Wang & Chunming Li & Tingting Wang, 2022. "What Constitutes the High-Quality Soundscape in Human Habitats? Utilizing a Random Forest Model to Explore Soundscape and Its Geospatial Factors Behind," IJERPH, MDPI, vol. 19(21), pages 1-23, October.
    6. Qing Yang & Zhanqiang Chang & Chou Xie & Chaoyong Shen & Bangsen Tian & Haoran Fang & Yihong Guo & Yu Zhu & Daoqin Zhou & Xin Yao & Guanwen Chen & Tao Xie, 2023. "Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China," Land, MDPI, vol. 12(7), pages 1-34, July.
    7. Jiansheng Wu & Xuechen Li & Si Li & Chang Liu & Tengyun Yi & Yuhao Zhao, 2022. "Spatial Heterogeneity and Attribution Analysis of Urban Thermal Comfort in China from 2000 to 2020," IJERPH, MDPI, vol. 19(9), pages 1-20, May.
    8. Shunqian Gao & Liu Yang & Hongzan Jiao, 2022. "Changes in and Patterns of the Tradeoffs and Synergies of Production-Living-Ecological Space: A Case Study of Longli County, Guizhou Province, China," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    9. Liang Zheng & Yajing Wang & Hui Yang & Yuzhe Bi & Lei Xu & Ying Wang, 2024. "Identifying Trade-Offs and Synergies of Production–Living–Ecological Functions and Their Drivers: The Case of Yangtze River Urban Agglomerations in China," Land, MDPI, vol. 13(8), pages 1-20, August.
    10. Gang Lin & Dong Jiang & Xiang Li & Jingying Fu, 2022. "Accounting for Carbon Sink and Its Dominant Influencing Factors in Chinese Ecological Space," Land, MDPI, vol. 11(10), pages 1-19, October.
    11. Hao Wang & Yunfeng Hu, 2021. "Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    12. Xiaodong Jing & Yuchen He & Yuanyuan Sun & Mark Wang & Xiuzhe Wang, 2024. "Spatial–Temporal Divergence and Coupling Analysis of Land Use Change and Ecosystem Service Value in the Yangtze River Delta Urban Agglomeration," Sustainability, MDPI, vol. 16(15), pages 1-20, August.
    13. Hanwen Du & Zhanqi Wang & Haiyang Li & Chen Zhang, 2024. "Analysis of Spatial and Temporal Pattern Evolution and Decoupling Relationships of Land Use Functions Based on Ecological Protection and High-Quality Development: A Case Study of the Yellow River Basi," Land, MDPI, vol. 13(6), pages 1-20, June.
    14. Rumeng Yin & Xin Li & Bin Fang, 2023. "The Relationship between the Spatial and Temporal Evolution of Land Use Function and the Level of Economic and Social Development in the Yangtze River Delta," IJERPH, MDPI, vol. 20(3), pages 1-23, January.
    15. Yunchen Wang & Boyan Li, 2022. "The Spatial Disparities of Land-Use Efficiency in Mainland China from 2000 to 2015," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    16. Zhang, Shaoyao & Deng, Wei & Zhang, Hao & Wang, Zhanyun, 2023. "Identification and analysis of transitional zone patterns along urban-rural-natural landscape gradients: An application to China’s southwest mountains," Land Use Policy, Elsevier, vol. 129(C).
    17. Chaoqing Huang & Chao He & Qian Wu & MinhThu Nguyen & Song Hong, 2023. "Classification of the Land Cover of a Megacity in ASEAN Using Two Band Combinations and Three Machine Learning Algorithms: A Case Study in Ho Chi Minh City," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    18. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    19. Ziqian Kang & Shuo Wang & Ling Xu & Fenglin Yang & Shushen Zhang, 2021. "Suitability assessment of urban land use in Dalian, China using PNN and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 913-936, March.
    20. Myroslava Lesiv & Anatoly Shvidenko & Dmitry Schepaschenko & Linda See & Steffen Fritz, 2019. "A spatial assessment of the forest carbon budget for Ukraine," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 985-1006, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:10:p:1586-:d:1488771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.