IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i1d10.1007_s11069-020-04343-8.html
   My bibliography  Save this article

Analytic hierarchy process applied to landslide susceptibility mapping of the North Branch of Argentino Lake, Argentina

Author

Listed:
  • Silvana Moragues

    (Glaciología y Ciencias Ambientales (IANIGLA)-Centro Científico Tecnológico (CCT))

  • María Gabriela Lenzano

    (Glaciología y Ciencias Ambientales (IANIGLA)-Centro Científico Tecnológico (CCT))

  • Mario Lanfri

    (Consultoría en Alerta y Respuesta Temprana a Emergencias (CAEARTE), Comisión Nacional de Actividades Espaciales (CONAE))

  • Stella Moreiras

    (Glaciología y Ciencias Ambientales (IANIGLA)-Centro Científico Tecnológico (CCT))

  • Esteban Lannutti

    (Glaciología y Ciencias Ambientales (IANIGLA)-Centro Científico Tecnológico (CCT))

  • Luis Lenzano

    (Glaciología y Ciencias Ambientales (IANIGLA)-Centro Científico Tecnológico (CCT))

Abstract

In the present study, we achieved the susceptibility mapping to slope instability processes by the implementation of Analytic Hierarchy Process and Weighted Linear Combination methods, in the North Branch of Argentino Lake, Southern Patagonian Icefield. The strong retraction of the glaciers in the area has triggered paraglacial readjustments, producing instability processes that favor the generation of mass removal processes. The results obtained from optical satellite images show that the highest degrees of susceptibility (4 and 5) are located on the western slopes of the Upsala Channel, Bertacchi and Cono Tributary Glaciers, and the Moyano and Norte Valleys, respectively. These slopes coincide with the geographic location of previous events surveyed by the inventory of unstable areas of the zone. Low degrees of susceptibility are found on the downhill valleys, outcrops rock and glaciers. The Consistency Ratio was 0.069, indicating that being less than 0.1 the study is reliable. The study sheds light on the knowledge of slopes and valleys that are more susceptible to processes of instability in mountainous areas, which would make it possible to prevent possible hazards associated with these events.

Suggested Citation

  • Silvana Moragues & María Gabriela Lenzano & Mario Lanfri & Stella Moreiras & Esteban Lannutti & Luis Lenzano, 2021. "Analytic hierarchy process applied to landslide susceptibility mapping of the North Branch of Argentino Lake, Argentina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 915-941, January.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04343-8
    DOI: 10.1007/s11069-020-04343-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04343-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04343-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gökçe Hasekioğulları & Murat Ercanoglu, 2012. "A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1157-1179, September.
    2. Prabin Kayastha & Megh Dhital & Florimond Smedt, 2012. "Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 479-498, September.
    3. Bakhtiar Feizizadeh & Thomas Blaschke, 2013. "GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2105-2128, February.
    4. Hamid Pourghasemi & Biswajeet Pradhan & Candan Gokceoglu, 2012. "Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 965-996, September.
    5. Jordi Corominas & Ramon Copons & Joan Vilaplana & Joan Altimir & Jordi Amigó, 2003. "Integrated Landslide Susceptibility Analysis and Hazard Assessment in the Principality of Andorra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 421-435, November.
    6. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    7. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yalu Han & Lizhi Du & Shiwei Shen, 2023. "Study on shear test and shear displacement of frozen joints with different opening degrees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 289-307, January.
    2. Ge Yan & Guoan Tang & Sijin Li & Dingyang Lu & Liyang Xiong & Shouyun Liang, 2023. "Uncertainty in regional scale assessment of landslide susceptibility using various resolutions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 399-423, May.
    3. Idris Bello Yamusa & Mohd Suhaili Ismail & Abdulwaheed Tella, 2022. "Highway Proneness Appraisal to Landslides along Taiping to Ipoh Segment Malaysia, Using MCDM and GIS Techniques," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    4. Jinming Zhang & Jianxi Qian & Yuefeng Lu & Xueyuan Li & Zhenqi Song, 2024. "Study on Landslide Susceptibility Based on Multi-Model Coupling: A Case Study of Sichuan Province, China," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    5. Michael Makonyo & Zahor Zahor, 2023. "GIS-based analysis of landslides susceptibility mapping: a case study of Lushoto district, north-eastern Tanzania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1085-1115, September.
    6. Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    2. Masanori Kohno & Yuki Higuchi & Yusuke Ono, 2023. "Evaluating earthquake-induced widespread slope failure hazards using an AHP-GIS combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1485-1512, March.
    3. Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    4. Cahio Guimarães Seabra Eiras & Juliana Ribeiro Gonçalves de Souza & Renata Delicio Andrade de Freitas & César Falcão Barella & Tiago Martins Pereira, 2021. "Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1427-1442, June.
    5. Sara Beheshtifar, 2023. "Identification of landslide-prone zones using a GIS-based multi-criteria decision analysis and region-growing algorithm in uncertain conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1475-1497, January.
    6. Quynh Duy Bui & Hang Ha & Dong Thanh Khuc & Dinh Quoc Nguyen & Jason von Meding & Lam Phuong Nguyen & Chinh Luu, 2023. "Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2283-2309, March.
    7. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    8. Gökhan Demir & Mustafa Aytekin & Aykut Akgün & Sabriye İkizler & Orhan Tatar, 2013. "A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1481-1506, February.
    9. Aihua Wei & Duo Li & Yahong Zhou & Qinghai Deng & Liangdong Yan, 2021. "A novel combination approach for karst collapse susceptibility assessment using the analytic hierarchy process, catastrophe, and entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 405-430, January.
    10. Gökhan Demir, 2018. "Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Suşehri Town, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 133-154, May.
    11. Kamila Hodasová & Martin Bednarik, 2021. "Effect of using various weighting methods in a process of landslide susceptibility assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 481-499, January.
    12. Erica Akemi Goto & Keith Clarke, 2021. "Using expert knowledge to map the level of risk of shallow landslides in Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1701-1729, September.
    13. Jonmenjoy Barman & Brototi Biswas & K. Srinivasa Rao, 2024. "A hybrid integration of analytical hierarchy process (AHP) and the multiobjective optimization on the basis of ratio analysis (MOORA) for landslide susceptibility zonation of Aizawl, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8571-8596, July.
    14. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    15. Chen Cao & Peihua Xu & Yihong Wang & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    16. Indrajit Chowdhuri & Subodh Chandra Pal & Rabin Chakrabortty & Sadhan Malik & Biswajit Das & Paramita Roy, 2021. "Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 697-722, May.
    17. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
    18. Bayes Ahmed, 2015. "Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1707-1737, December.
    19. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    20. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04343-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.