IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i12d10.1007_s11069-025-07365-2.html
   My bibliography  Save this article

Assessment of heatwave, drought, vegetation and moisture content using remote sensing and GIS: a comprehensive study in North-Western part of Bangladesh

Author

Listed:
  • Md. Mahibi Alom Mahim

    (University of Rajshahi)

  • Md. Ishtiak Ahmed Rasel

    (University of Rajshahi)

  • Md. Mahabubul Hasan

    (University of Rajshahi)

  • A. H. M. Selim Reza

    (University of Rajshahi)

Abstract

This study examines the interplay of heatwaves, droughts, vegetation health, and moisture content in the northwestern region of Bangladesh using remote sensing and GIS techniques. Climate indices, including the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Temperature Condition Index (TCI), and Land Surface Temperature (LST), were analyzed alongside vegetation and moisture indicators, such as the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). Pearson correlation analysis revealed a strong negative correlation between LST and NDVI (− 0.995), indicating that rising temperatures significantly reduce vegetation density. NDVI values ranged from − 0.14 to 0.58, reflecting sparse vegetation in drought-prone areas. Also, a positive correlation of 0.956 between LST and NDWI indicates that higher surface temperatures are strongly associated with reduced moisture levels or drier conditions in these areas. That means when LST rises, the NDWI values consistently and significantly decrease, reflecting a drop in environmental moisture. NDWI values, predominantly negative throughout the period, indicated a persistent decline in moisture availability. The analysis of drought indices highlighted SPEI’s superior performance in capturing drought severity, with Rajshahi and Pabna witnessing the most significant increases in drought occurrences. Over the study period (2013–2022), TCI values consistently identified moderate to extreme drought conditions, with LST reaching as high as 52.12 °C in extreme drought-affected areas. These findings emphasize the urgent need for adaptive strategies to mitigate the escalating effects of climate change on agricultural productivity and ecological stability in this vulnerable region. Previous studies in Bangladesh have focused on small regions using limited indicators. However, no comprehensive research has combined multiple drought and heatwave indices such as SPI, SPEI, TCI, LST, NDVI, and NDWI over a large-scale area in the northwestern part of Bangladesh. This study addresses this gap by integrating multiple indices to assess environmental dynamics from 2013 to 2022.

Suggested Citation

  • Md. Mahibi Alom Mahim & Md. Ishtiak Ahmed Rasel & Md. Mahabubul Hasan & A. H. M. Selim Reza, 2025. "Assessment of heatwave, drought, vegetation and moisture content using remote sensing and GIS: a comprehensive study in North-Western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(12), pages 14563-14590, July.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:12:d:10.1007_s11069-025-07365-2
    DOI: 10.1007/s11069-025-07365-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07365-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07365-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Thenkabail, Prasad Srinivas & Gamage, M. S. D. Nilantha & Smakhtin, Vladimir U., 2004. "The use of remote sensing data for drought assessment and monitoring in southwest Asia," IWMI Research Reports H035615, International Water Management Institute.
    2. N. Bandyopadhyay & C. Bhuiyan & A. K. Saha, 2016. "Heat waves, temperature extremes and their impacts on monsoon rainfall and meteorological drought in Gujarat, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 367-388, May.
    3. Cinoo Kang & Chaerin Park & Whanhee Lee & Nazife Pehlivan & Munjeong Choi & Jeongju Jang & Ho Kim, 2020. "Heatwave-Related Mortality Risk and the Risk-Based Definition of Heat Wave in South Korea: A Nationwide Time-Series Study for 2011–2017," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    4. Maida Zahid & Ghulam Rasul, 2012. "Changing trends of thermal extremes in Pakistan," Climatic Change, Springer, vol. 113(3), pages 883-896, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahad Saeed & Mansour Almazroui & Nazrul Islam & Mariam Saleh Khan, 2017. "Intensification of future heat waves in Pakistan: a study using CORDEX regional climate models ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1635-1647, July.
    2. Yeongjin Gwon & Yuanyuan Ji & Jesse E. Bell & Azar M. Abadi & Jesse D. Berman & Austin Rau & Ronald D. Leeper & Jared Rennie, 2023. "The Association between Drought Exposure and Respiratory-Related Mortality in the United States from 2000 to 2018," IJERPH, MDPI, vol. 20(12), pages 1-13, June.
    3. Efrosyni Kanellou & Nicos Spyropoulos & Nicolas Dalezios, 2012. "Geoinformatic Intelligence Methodologies for Drought Spatiotemporal Variability in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1089-1106, March.
    4. Nicolas R. Dalezios & Nicholas Dercas & Nicos V. Spyropoulos & Emmanouil Psomiadis, 2019. "Remotely Sensed Methodologies for Crop Water Availability and Requirements in Precision Farming of Vulnerable Agriculture," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1499-1519, March.
    5. Intekhab Alam & Shinji Otani & Abir Nagata & Mohammad Shahriar Khan & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2022. "Short- and Long-Term Effects of Drought on Selected Causes of Mortality in Northern Bangladesh," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    6. Li, Siyi & Wang, Bin & Feng, Puyu & Liu, De Li & Li, Linchao & Shi, Lijie & Yu, Qiang, 2022. "Assessing climate vulnerability of historical wheat yield in south-eastern Australia's wheat belt," Agricultural Systems, Elsevier, vol. 196(C).
    7. Jacqueline Meijer-Irons, 2015. "Who perceives what? A demographic analysis of subjective perception in rural Thailand," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 13(1), pages 167-191.
    8. Adil Dilawar & Baozhang Chen & Arfan Arshad & Lifeng Guo & Muhammad Irfan Ehsan & Yawar Hussain & Alphonse Kayiranga & Simon Measho & Huifang Zhang & Fei Wang & Xiaohong Sun & Mengyu Ge, 2021. "Towards Understanding Variability in Droughts in Response to Extreme Climate Conditions over the Different Agro-Ecological Zones of Pakistan," Sustainability, MDPI, vol. 13(12), pages 1-28, June.
    9. Muhammad Awais Hussain & Shuai Zhang & Muhammad Muneer & Muhammad Aamir Moawwez & Muhammad Kamran & Ejaz Ahmed, 2022. "Assessing and Mapping Spatial Variation Characteristics of Natural Hazards in Pakistan," Land, MDPI, vol. 12(1), pages 1-40, December.
    10. Fadly Syah Arsad & Rozita Hod & Norfazilah Ahmad & Rohaida Ismail & Norlen Mohamed & Mazni Baharom & Yelmizaitun Osman & Mohd Firdaus Mohd Radi & Fredolin Tangang, 2022. "The Impact of Heatwaves on Mortality and Morbidity and the Associated Vulnerability Factors: A Systematic Review," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    11. Dong Jiang & Jingying Fu & Dafang Zhuang & Xinliang Xu, 2013. "Dynamic monitoring of drought using HJ-1 and MODIS time series data in northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 337-350, September.
    12. Atiqotun Fitriyah & Alvin Fatikhunnada & Fumi Okura & Bayu Dwi Apri Nugroho & Tasuku Kato, 2019. "Analysis of the Drought Mitigated Mechanism in Terraced Paddy Fields Using CWSI and TVDI Indices and Hydrological Monitoring," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    13. Eriyagama, Nishadi & Smakhtin, Vladimir U. & Gamage, Nilantha, 2009. "Mapping drought patterns and impacts: a global perspective," IWMI Research Reports 57027, International Water Management Institute.
    14. Arya Sajeev & Subrahmanya Kundapura, 2024. "Comparative evaluation of meteorological and hydrological drought using stationary and non-stationary indices in a semi-arid river basin in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 13433-13468, November.
    15. Muhammad Ashraf & Adnan Arshad & Praharsh M. Patel & Adeel Khan & Huma Qamar & Ristina Siti-Sundari & Muhammad Usman Ghani & Ali Amin & Jamilur Rehman Babar, 2021. "Quantifying climate-induced drought risk to livelihood and mitigation actions in Balochistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2127-2151, December.
    16. Jack Ngarambe & Mattheos Santamouris & Geun Young Yun, 2022. "The Impact of Urban Warming on the Mortality of Vulnerable Populations in Seoul," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    17. V. K. Prajapati & M. Khanna & M. Singh & R. Kaur & R. N. Sahoo & D. K. Singh, 2021. "Evaluation of time scale of meteorological, hydrological and agricultural drought indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 89-109, October.
    18. Abdol Rassoul Zarei & Marzieh Mokarram & Mohammad Reza Mahmoudi, 2023. "Comparison of the capability of the Meteorological and Remote Sensing Drought Indices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 769-796, January.
    19. R. Sahoo & Dipanwita Dutta & M. Khanna & N. Kumar & S. Bandyopadhyay, 2015. "Drought assessment in the Dhar and Mewat Districts of India using meteorological, hydrological and remote-sensing derived indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 733-751, June.
    20. Farah Khan, 2022. "Analysis of the Historical Temperature of Different Cities of Pakistan to Determine the Trends and Shift in Temperature," International Journal of Innovations in Science & Technology, 50sea, vol. 4(3), pages 801-808, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:12:d:10.1007_s11069-025-07365-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.