IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i3d10.1007_s11069-023-06309-y.html
   My bibliography  Save this article

Hazardous exogenous geological processes in the mountains under the pressure of human activity: 15-year observations from a natural landscape to a large ski resort

Author

Listed:
  • Anna Derkacheva

    (HSE University
    Russian Academy of Sciences)

  • Valentin Golosov

    (Russian Academy of Sciences
    Moscow State University)

  • Sergey Shvarev

    (Russian Academy of Sciences
    Russian Academy of Sciences)

Abstract

Recent studies reveal an ongoing worldwide increase in a number of slope instability manifestations and their positive correlation with human activity. The latter involves construction activity as one of the most common trigger or susceptibility raising factors. In this study, we conduct a detailed analysis of an extensive and rapid transformation of a forest-covered mountain landscape and its response. The study area is a mountain sport cluster of the Winter Olympic Games-2014, which developed from scratch to a large tourist resort in just a few years. A time-series of aerospace images were used for a comprehensive mapping of the land cover changes and associated development of slope instabilities over 15 years, from a “pre-construction era” until now. We identify widespread deforestation and the land cover changes in upper chains of the fluvial systems to be the key drivers of the enhanced multiplication and intensification of the slope hazard processes. Completion of the active construction phase leads relatively quickly to a gradual natural stabilisation of the slope-located processes. However, the stream-located processes need several decades to regain a balance, because the increasing energy of small watercourses, due to growth of surface runoff coefficient, led to the transformation of longitudinal profiles of their channels. The obtained results provide a refined look at the anthropogenic influence on the slope instability occurrence and their short-time evolution in a mountain forest landscape. We also discuss the prospective course of events for this resort.

Suggested Citation

  • Anna Derkacheva & Valentin Golosov & Sergey Shvarev, 2024. "Hazardous exogenous geological processes in the mountains under the pressure of human activity: 15-year observations from a natural landscape to a large ski resort," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2847-2868, February.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06309-y
    DOI: 10.1007/s11069-023-06309-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06309-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06309-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liying Sun & Bingjuan Ma & Liang Pei & Xiaohang Zhang & John L. Zhou, 2021. "The relationship of human activities and rainfall-induced landslide and debris flow hazards in Central China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 147-169, May.
    2. Yongwei Li & Xianmin Wang & Hang Mao, 2020. "Influence of human activity on landslide susceptibility development in the Three Gorges area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2115-2151, December.
    3. N. Zhou & S. Zhao, 2013. "Urbanization process and induced environmental geological hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 797-810, June.
    4. M. Parise & S. Cannon, 2012. "Wildfire impacts on the processes that generate debris flows in burned watersheds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 217-227, March.
    5. Veniamin Perov & Sergey Chernomorets & Olga Budarina & Elena Savernyuk & Tatiana Leontyeva, 2017. "Debris flow hazards for mountain regions of Russia: regional features and key events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 199-235, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamek Nahayo & Cui Peng & Yu Lei & Rongzhi Tan, 2023. "Spatial understanding of historical and future landslide variation in Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 613-641, October.
    2. Jie Liu & Zhen Wu & Huiwen Zhang, 2021. "Analysis of Changes in Landslide Susceptibility according to Land Use over 38 Years in Lixian County, China," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
    3. Michalis Diakakis & Spyridon Mavroulis & Emmanuel Vassilakis & Vassiliki Chalvatzi, 2023. "Exploring the Application of a Debris Flow Likelihood Regression Model in Mediterranean Post-Fire Environments, Using Field Observations-Based Validation," Land, MDPI, vol. 12(3), pages 1-18, February.
    4. Haipeng Zhou & Chenglin Mu & Bo Yang & Gang Huang & Jinpeng Hong, 2025. "Evaluating Landslide Hazard in Western Sichuan: Integrating Rainfall and Geospatial Factors Using a Coupled Information Value–Geographic Logistic Regression Model," Sustainability, MDPI, vol. 17(4), pages 1-30, February.
    5. Jihyun Yang & Jeffrey Shragge & Aaron J. Girard & Edgard Gonzales & Javier Ticona & Armando Minaya & Richard Krahenbuhl, 2023. "Seismic Characterization of a Landslide Complex: A Case History from Majes, Peru," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    6. Fanyu Zhang & Jianbing Peng & Xiaowei Huang & Hengxing Lan, 2021. "Hazard assessment and mitigation of non-seismically fatal landslides in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 785-804, March.
    7. Ankit Tyagi & Neha Gupta & Reet Kamal Tiwari & Naveen James & Sagar Rohidas Chavan, 2025. "Determining the impact of anthropogenic activities and climate change on landslide susceptibility for the Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 5239-5265, March.
    8. Liying Sun & Bingjuan Ma & Liang Pei & Xiaohang Zhang & John L. Zhou, 2021. "The relationship of human activities and rainfall-induced landslide and debris flow hazards in Central China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 147-169, May.
    9. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    10. Jinming Zhang & Jianxi Qian & Yuefeng Lu & Xueyuan Li & Zhenqi Song, 2024. "Study on Landslide Susceptibility Based on Multi-Model Coupling: A Case Study of Sichuan Province, China," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    11. Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.
    12. Hussam Al-Bilbisi, 2019. "Spatial Monitoring of Urban Expansion Using Satellite Remote Sensing Images: A Case Study of Amman City, Jordan," Sustainability, MDPI, vol. 11(8), pages 1-14, April.
    13. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    14. Mohib Ullah & Haijun Qiu & Wenchao Huangfu & Dongdong Yang & Yingdong Wei & Bingzhe Tang, 2025. "Integrated Machine Learning Approaches for Landslide Susceptibility Mapping Along the Pakistan–China Karakoram Highway," Land, MDPI, vol. 14(1), pages 1-29, January.
    15. Hazra, Devika & Gallagher, Patricia, 2022. "Role of insurance in wildfire risk mitigation," Economic Modelling, Elsevier, vol. 108(C).
    16. Ahmed M. Youssef & Bosy A. El‑Haddad & Hariklia D. Skilodimou & George D. Bathrellos & Foroogh Golkar & Hamid Reza Pourghasemi, 2024. "Landslide susceptibility, ensemble machine learning, and accuracy methods in the southern Sinai Peninsula, Egypt: Assessment and Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14227-14258, December.
    17. Joe Scott & Don Helmbrecht & Matthew Thompson & David Calkin & Kate Marcille, 2012. "Probabilistic assessment of wildfire hazard and municipal watershed exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 707-728, October.
    18. Sven Fuchs & Alexandr Shnyparkov & Vincent Jomelli & Nikolay Kazakov & Sergey Sokratov, 2017. "Editorial to the special issue on natural hazards and risk research in Russia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 1-16, August.
    19. Xin Wei & Lulu Zhang & Junyao Luo & Dongsheng Liu, 2021. "A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 471-497, October.
    20. Omar S. Areu-Rangel & Rosanna Bonasia & Federico Di Traglia & Matteo Del Soldato & Nicola Casagli, 2020. "Flood Susceptibility and Sediment Transport Analysis of Stromboli Island after the 3 July 2019 Paroxysmal Explosion," Sustainability, MDPI, vol. 12(8), pages 1-18, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06309-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.