IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i14d10.1007_s11069-024-06706-x.html
   My bibliography  Save this article

Predicting climate-based changes of landscape structure for Turkiye via global climate change scenarios: a case study in Bartin river basin with time series analysis for 2050

Author

Listed:
  • Merve Kalayci Kadak

    (Kastamonu University
    University of Connecticut)

  • Sevgi Ozturk

    (Kastamonu University)

  • Ahmet Mert

    (Isparta University of Applied Sciences)

Abstract

This study was designed to reveal the possible effects of climate change on the landscape structure of the Bartın Stream Basin. Remote sensing (RS) and Geographic Information Systems (GIS) tools and statistical methods were employed throughout the study. Landsat satellite images, which are 30 m × 30 m resolution images produced by Landsat 4–5, Landsat 7, and Landsat 8-Oli satellites, were used. In addition, 42 variables were produced, including 19 bioclimatic variables, plant index data from satellite images, and environmental variables. The effect of the produced variables on land use-land cover (LULC) was investigated. Then, the expected situation in 2050 according to the RCP climate change scenarios was estimated using the R Studio software with time series analysis. The data for 2050 were modeled and mapped using the Maximum Entropy method. As a result, it was revealed that LULC changes within the basin would be in the form of artificialization and increased fragmentation, that bare lands and residential areas would increase, and that agricultural areas and forest areas would decrease by approximately 50%. Planning should be made in order to reduce the breakdown of landscape resistance by predicting the adverse events to be experienced due to climate change in the future. It was concluded that agriculture, which was determined as the development strategy of the region in the current Environmental Plan (EP) of the basin, would not be possible due to the approximately 50% loss in agricultural areas. This study revealed that the effects of climate change, which is the biggest threat of the age, could be revealed with statistical models. Graphical Abstract

Suggested Citation

  • Merve Kalayci Kadak & Sevgi Ozturk & Ahmet Mert, 2024. "Predicting climate-based changes of landscape structure for Turkiye via global climate change scenarios: a case study in Bartin river basin with time series analysis for 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 13289-13307, November.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:14:d:10.1007_s11069-024-06706-x
    DOI: 10.1007/s11069-024-06706-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06706-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06706-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    2. Olusola O. Festus & Wei Ji & Opeyemi A. Zubair, 2020. "Characterizing the Landscape Structure of Urban Wetlands Using Terrain and Landscape Indices," Land, MDPI, vol. 9(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. Tomoya Mori & Daisuke Murakami, 2025. "Sustainability of cities under declining population and decreasing distance frictions: The case of Japan," KIER Working Papers 1117, Kyoto University, Institute of Economic Research.
    3. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    4. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    5. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024. "Autoregressive conditional betas," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    7. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    8. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    9. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    10. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    11. Tommaso Proietti, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Econometrics 0209002, University Library of Munich, Germany.
    12. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    13. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    14. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    15. Oreste Napolitano & Alberto Montagnoli, 2010. "The European Unemployment Gap and the Role of Monetary Policy," Economics Bulletin, AccessEcon, vol. 30(2), pages 1346-1358.
    16. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    17. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    18. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    19. Omar H. M. N. Bashar, 2015. "The Trickle‐down Effect of the Mining Boom in Australia: Fact or Myth?," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 94-108, June.
    20. Funke, Michael & Tsang, Andrew, 2019. "The direction and intensity of China's monetary policy conduct: A dynamic factor modelling approach," BOFIT Discussion Papers 8/2019, Bank of Finland Institute for Emerging Economies (BOFIT).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:14:d:10.1007_s11069-024-06706-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.