IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i12d10.1007_s11069-024-06650-w.html
   My bibliography  Save this article

Characterizing urban flooding in the Kathmandu Valley, Nepal: the influence of urbanization and river encroachment

Author

Listed:
  • Anusha Danegulu

    (Tribhuvan University)

  • Saroj Karki

    (Ministry of Water Supply, Irrigation and Energy)

  • Pawan Kumar Bhattarai

    (Tribhuvan University)

  • Vishnu Prasad Pandey

    (Tribhuvan University
    Tribhuvan University)

Abstract

Urban flooding problem has been exacerbated in recent times, especially in developing nations, due to haphazard changes in land use and land cover (LULC) resulting from rapid urban expansion, coupled with river encroachments and inadequately engineered river management structures. Kathmandu Valley Watershed (KVW), encompassing Kathmandu, Bhaktapur and Lalitur districts, the fastest growing cities in South Asia, is constantly growing, with a significant increase in urban areas. Due to urbanization, the watershed’s water storage capacity is diminishing, while surface runoff volume and rate are accelerating. We evaluated the isolated as well as the integrated impact of multiple scenarios of LULC change and river encroachment on flood inundation characteristics in KVW. LULC prediction revealed an increase in built-up areas by 113% between 1990 and 2020, which are further projected to increase by 29% by 2050. Inundation modeling using Rainfall-Runoff Inundation (RRI) model showed that rather than the increase in inundation extent, the depth of inundation is projected to increase in future as a result of increasing urban areas. Furthermore, our research highlighted that the impact of river width encroachment had a more substantial effect on flooding compared to changes in LULC alone. Similarly, integrated impact of LULC change and river encroachment was more pronounced than the impact of change in LULC alone. The aggregate of observations leads to the conclusion that the encroachment of rivers is the predominant factor contributing to the flooding issue within the KVW. The findings of the study is anticipated to assist policymakers in effective land use planning and in proposing appropriate development initiatives concerning the river environment.

Suggested Citation

  • Anusha Danegulu & Saroj Karki & Pawan Kumar Bhattarai & Vishnu Prasad Pandey, 2024. "Characterizing urban flooding in the Kathmandu Valley, Nepal: the influence of urbanization and river encroachment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10923-10947, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06650-w
    DOI: 10.1007/s11069-024-06650-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06650-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06650-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Xin & Zheng, Xin-Qi & Chen, Rui, 2014. "A land use change model: Integrating landscape pattern indexes and Markov-CA," Ecological Modelling, Elsevier, vol. 283(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhagawat Rimal & Sushila Rijal & Abhishek Tiwary, 2025. "Prediction of Urban Growth and Sustainability Challenges Based on LULC Change: Case Study of Two Himalayan Metropolitan Cities," Land, MDPI, vol. 14(8), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashem Dadashpoor & Neda Malekzadeh & Sadegh Saeidishirvan, 2023. "A typology of metropolitan spatial structure: a systematic review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(12), pages 13667-13693, December.
    2. Yusuyunjiang Mamitimin & Zibibula Simayi & Ayinuer Mamat & Bumairiyemu Maimaiti & Yunfei Ma, 2023. "FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    3. Yuhan Yu & Mengmeng Yu & Lu Lin & Jiaxin Chen & Dongjie Li & Wenting Zhang & Kai Cao, 2019. "National Green GDP Assessment and Prediction for China Based on a CA-Markov Land Use Simulation Model," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    4. Svitlana Pyrohova & Jiafei Hu & Jonathan Corcoran, 2023. "Urban land use transitions: Examining change over 19 years using sequence analysis. The case of South-East Queensland, Australia," Environment and Planning B, , vol. 50(9), pages 2579-2593, November.
    5. Yiting Chen & Zhanbin Li & Peng Li & Yixin Zhang & Hailiang Liu & Jinjin Pan, 2022. "Impacts and Projections of Land Use and Demographic Changes on Ecosystem Services: A Case Study in the Guanzhong Region, China," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    6. Yi Lu & Xiangrong Wang & Yujing Xie & Kun Li & Yiyang Xu, 2016. "Integrating Future Land Use Scenarios to Evaluate the Spatio-Temporal Dynamics of Landscape Ecological Security," Sustainability, MDPI, vol. 8(12), pages 1-20, November.
    7. Yaya Tian & Guanghui Jiang & Dingyang Zhou & Tao Zhou & Wenqiu Ma, 2022. "A Refined Rural Settlements Simulation Considering the Competition Relationship among the Internal Land Use Types: A Case Study of Pinggu District," Land, MDPI, vol. 11(5), pages 1-19, April.
    8. Ge Shi & Nan Jiang & Lianqiu Yao, 2018. "Land Use and Cover Change during the Rapid Economic Growth Period from 1990 to 2010: A Case Study of Shanghai," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    9. Shilei Wang & Yanbo Qu & Weiying Zhao & Mei Guan & Zongli Ping, 2022. "Evolution and Optimization of Territorial-Space Structure Based on Regional Function Orientation," Land, MDPI, vol. 11(4), pages 1-26, March.
    10. Mustafa, Ahmed & Cools, Mario & Saadi, Ismaïl & Teller, Jacques, 2017. "Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM)," Land Use Policy, Elsevier, vol. 69(C), pages 529-540.
    11. Nij Tontisirin & Sutee Anantsuksomsri, 2021. "Economic Development Policies and Land Use Changes in Thailand: From the Eastern Seaboard to the Eastern Economic Corridor," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    12. Shixiong Yan & Yuannan Long & Huaiguang He & Xiaofeng Wen & Qian Lv & Moruo Zheng, 2023. "Flood response to urban expansion in the Lushui River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 779-805, January.
    13. Yunfei Ma & Yusuyunjiang Mamitimin & Ailijiang Nuerla, 2025. "Identification and Prediction of Land Use Spatial Conflicts in Urban Agglomeration on the Northern Slope of Tianshan Mountains Under the Background of Urbanization," Land, MDPI, vol. 14(2), pages 1-27, January.
    14. Yongyu Zhao & Alimujiang Kasimu & Hongwu Liang & Rukeya Reheman, 2022. "Construction and Restoration of Landscape Ecological Network in Urumqi City Based on Landscape Ecological Risk Assessment," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    15. Jie Liu & Lang Zhang & Qingping Zhang, 2019. "The Development Simulation of Urban Green Space System Layout Based on the Land Use Scenario: A Case Study of Xuchang City, China," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    16. Zhuzhou Zhuang & Kaiyuan Li & Jiaxun Liu & Qianwen Cheng & Yu Gao & Jinxia Shan & Lingyan Cai & Qiuhao Huang & Yanming Chen & Dong Chen, 2016. "China’s New Urban Space Regulation Policies: A Study of Urban Development Boundary Delineations," Sustainability, MDPI, vol. 9(1), pages 1-16, December.
    17. Chenmingyang Jiang & Xinyu Du & Jun Cai & Hao Li & Qibing Chen, 2024. "Study on the Evolution and Prediction of Land Use and Landscape Patterns in the Jianmen Shu Road Heritage Area," Land, MDPI, vol. 13(12), pages 1-22, December.
    18. Haoran Wang & Mengdi Zhang & Chuanying Wang & Kaiyue Wang & Chen Wang & Yang Li & Xiuling Bai & Yunkai Zhou, 2022. "Spatial and Temporal Changes of Landscape Patterns and Their Effects on Ecosystem Services in the Huaihe River Basin, China," Land, MDPI, vol. 11(4), pages 1-19, April.
    19. Siqi Liu & Qing Yu & Chen Wei, 2019. "Spatial-Temporal Dynamic Analysis of Land Use and Landscape Pattern in Guangzhou, China: Exploring the Driving Forces from an Urban Sustainability Perspective," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    20. Chunyang Zhang & Junjie Chen, 2023. "Spatial Morphology Optimization of Rural Planning Based on Space of Flow: An Empirical Study of Zepan Village in China," Land, MDPI, vol. 12(4), pages 1-23, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06650-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.