IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v119y2023i3d10.1007_s11069-023-06171-y.html
   My bibliography  Save this article

Examination of safe routes for emergency responders and people during urban flood: a case study of Isparta, Türkiye

Author

Listed:
  • Tahsin Baykal

    (Suleyman Demirel University)

  • Serdal Terzi

    (Suleyman Demirel University)

  • Emine Dilek Taylan

    (Suleyman Demirel University)

Abstract

Climate change is increasing the frequency and magnitude of floods in many parts of the world. Therefore, people are affected significantly during floods experienced in urban areas and road networks, as well as they, may be stranded at these points due to flooding, traffic jams, and flooding of vehicles. Thus, the quick search and rescue activities in these areas may reduce the loss of life and property. This study aims to create safe routes for emergency response teams and people in urban floods. For this purpose, 2D flood analysis is carried out, and flood risk classes are determined for vehicles and people according to the results of this analysis. According to these determined flood risk classes, the most appropriate point in the flood area is found for the emergency response teams to carry out their search and rescue activities effectively. The most suitable routes for emergency response teams are obtained in four different scenarios. In addition, 13 different safe points are identified for pedestrians in the flood area, and routes are created to reach these points. Consequently, the findings of the study demonstrate that during flooding, human evacuations and search and rescue activities may happen fast.

Suggested Citation

  • Tahsin Baykal & Serdal Terzi & Emine Dilek Taylan, 2023. "Examination of safe routes for emergency responders and people during urban flood: a case study of Isparta, Türkiye," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 1379-1397, December.
  • Handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-023-06171-y
    DOI: 10.1007/s11069-023-06171-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06171-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06171-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junqiang Xia & Roger Falconer & Xuanwei Xiao & Yejiang Wang, 2014. "Criterion of vehicle stability in floodwaters based on theoretical and experimental studies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1619-1630, January.
    2. Katerina Tzavella & Alexander Fekete & Frank Fiedrich, 2018. "Opportunities provided by geographic information systems and volunteered geographic information for a timely emergency response during flood events in Cologne, Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 29-57, April.
    3. Bingyao Li & Jingming Hou & Yongyong Ma & Ganggang Bai & Tian Wang & Guoxin Xu & Binzhong Wu & Yongbao Jiao, 2022. "A coupled high-resolution hydrodynamic and cellular automata-based evacuation route planning model for pedestrians in flooding scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 607-628, January.
    4. Maria Carolina Rogelis, 2015. "Flood Risk in Road Networks," World Bank Publications - Reports 22980, The World Bank Group.
    5. Giovanni Musolino & Reza Ahmadian & Junqiang Xia, 2022. "Enhancing pedestrian evacuation routes during flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1941-1965, July.
    6. Jinyoung Kim & Yuji Kuwahara & Manish Kumar, 2011. "A DEM-based evaluation of potential flood risk to enhance decision support system for safe evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1561-1572, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    2. Muhammad Imran & Umair Qazi & Ferda Ofli, 2022. "TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels," Data, MDPI, vol. 7(1), pages 1-27, January.
    3. Ebrahim Hamid Hussein Al-Qadami & Zahiraniza Mustaffa & Syed Muzzamil Hussain Shah & Eduardo Matínez-Gomariz & Khamaruzaman Wan Yusof, 2022. "Full-scale experimental investigations on the response of a flooded passenger vehicle under subcritical conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 325-348, January.
    4. Jingyi Gao & Osamu Murao & Xuanda Pei & Yitong Dong, 2022. "Identifying Evacuation Needs and Resources Based on Volunteered Geographic Information: A Case of the Rainstorm in July 2021, Zhengzhou, China," IJERPH, MDPI, vol. 19(23), pages 1-21, November.
    5. Xiaoxin Zhu & Guanghai Zhang & Baiqing Sun, 2019. "A comprehensive literature review of the demand forecasting methods of emergency resources from the perspective of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 65-82, May.
    6. Yang, Zihao & Wang, Hao & Chen, Bin, 2024. "Assessment of urban waterlogging-induced road traffic safety risk and identification of its driving factors: A case study of Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    7. Maity, Somnath & Sundar, S., 2022. "A coupled model for macroscopic behavior of crowd in flood induced evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    8. Alexander Fekete & Lisa Bross & Steffen Krause & Florian Neisser & Katerina Tzavella, 2021. "Bridging Gaps in Minimum Humanitarian Standards and Shelter Planning by Critical Infrastructures," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    9. HaiBo Hu, 2016. "Rainstorm flash flood risk assessment using genetic programming: a case study of risk zoning in Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 485-500, August.
    10. Weiping Wang & Saini Yang & Jianxi Gao & Fuyu Hu & Wanyi Zhao & H. Eugene Stanley, 2020. "An Integrated Approach for Assessing the Impact of Large‐Scale Future Floods on a Highway Transport System," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1780-1794, September.
    11. Mahmoud Mabrouk & Haoying Han & Mahran Gamal N. Mahran & Karim I. Abdrabo & Ahmed Yousry, 2024. "Revisiting Urban Resilience: A Systematic Review of Multiple-Scale Urban Form Indicators in Flood Resilience Assessment," Sustainability, MDPI, vol. 16(12), pages 1-47, June.
    12. Sahil & Sandeep Kumar Sood, 2021. "Bibliometric monitoring of research performance in ICT-based disaster management literature," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 103-132, February.
    13. Daniela Poli & Ivano Caravaggi, 2013. "3D modeling of large urban areas with stereo VHR satellite imagery: lessons learned," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 53-78, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:119:y:2023:i:3:d:10.1007_s11069-023-06171-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.