IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v83y2016i1d10.1007_s11069-016-2325-x.html
   My bibliography  Save this article

Rainstorm flash flood risk assessment using genetic programming: a case study of risk zoning in Beijing

Author

Listed:
  • HaiBo Hu

    (CMA)

Abstract

In this study, a genetic programming (GP) algorithm is introduced to solve the symbolic regression problem for flash flood risk zoning in Beijing. GP operates in simulation of biological revolution and can avoid arbitrariness in risk estimates. Herein, this revolutionary computing searched for an appropriate model to best fit the training samples which comprise the data fields of the predictand of Ripley’s K-values to be the posterior risk, and the predictors of the rainstorm hazard index value (RHIV), physical vulnerability, terrain factor, impervious surface area, and population density. After generations of revolution, the optimal fit regressions for estimating the risk value were determined in the form of function (parse) trees. Also, the grid risk values were calculated using the deduced regression. The risk zoning map indicates that the risk values are higher in urban areas, which is reasonable in comparison with the distribution of historical flash flood events. With an explicit model structure, this symbolic regression manifests that the risk value is mainly determined by the RHIV and impervious land surface and is weakly correlated with the other risk factors, e.g., the physical vulnerability, the terrain factor, and population density. Our research demonstrates that GP in an artificial intelligence manner meets the needs of risk assessment in determining the optimal fit regressions and is a promising technique for future applications. Meanwhile, approaches are still available for improving the GP application in the risk assessment, e.g., considering the historical losses in posterior risk estimations and improvement in the sampling training data.

Suggested Citation

  • HaiBo Hu, 2016. "Rainstorm flash flood risk assessment using genetic programming: a case study of risk zoning in Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 485-500, August.
  • Handle: RePEc:spr:nathaz:v:83:y:2016:i:1:d:10.1007_s11069-016-2325-x
    DOI: 10.1007/s11069-016-2325-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2325-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2325-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Stevens & Yan Song & Philip Berke, 2010. "New Urbanist developments in flood-prone areas: safe development, or safe development paradox?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 605-629, June.
    2. Jun Shi & Linli Cui, 2012. "Characteristics of high impact weather and meteorological disaster in Shanghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 951-969, February.
    3. Haibo Hu & Xudong Liang & Fengchun You & Jisong Sun, 2015. "An analysis of meteorological services under extreme weather conditions based on a Bayesian decision-support model: a case study of the thunderstorms in Beijing on July 21, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1225-1241, September.
    4. Volker Meyer & Sebastian Scheuer & Dagmar Haase, 2009. "A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(1), pages 17-39, January.
    5. Young-Oh Kim & Seung Seo & Ock-Jae Jang, 2012. "Flood risk assessment using regional regression analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1203-1217, September.
    6. Ľubomír Solín & Ján Feranec & Jozef Nováček, 2011. "Land cover changes in small catchments in Slovakia during 1990–2006 and their effects on frequency of flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(1), pages 195-214, January.
    7. Mahnaz Gumrukcuoglu & Douglas Goodin & Charles Martin, 2010. "Landuse change in upper Kansas river floodplain: following the 1993 flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 467-479, November.
    8. Jinyoung Kim & Yuji Kuwahara & Manish Kumar, 2011. "A DEM-based evaluation of potential flood risk to enhance decision support system for safe evacuation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1561-1572, December.
    9. X. Lu & Lishan Ran, 2011. "China flood havoc highlights poor urban planning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 575-576, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Runjie Li & Jinkang Du & Guodong Bian & Yuefeng Wang & Changchun Chen & Xueliang Zhang & Maohua Li & Shanshan Wang & Senyao Wu & Shunping Xie & Long Yang & Chong-Yu Xu, 2020. "An Integrated Modelling Approach for Flood Simulation in the Urbanized Qinhuai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 3967-3984, October.
    2. Lu Liu & Jian Sun & Binliang Lin, 2022. "A large-scale waterlogging investigation in a megacity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1505-1524, November.
    3. Xianhua Wu & Jiqiang Zhao & Yun Kuai & Ji Guo & Ge Gao, 2021. "Construction and verification of a rainstorm death risk index based on grid data fusion: a case study of the Beijing rainstorm on July 21, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2293-2318, July.
    4. Changjun Liu & Liang Guo & Lei Ye & Shunfu Zhang & Yanzeng Zhao & Tianyu Song, 2018. "A review of advances in China’s flash flood early-warning system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 619-634, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Scheuer & Dagmar Haase & Volker Meyer, 2011. "Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnera," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(2), pages 731-751, August.
    2. Martina Zeleňáková & Lenka Gaňová & Pavol Purcz & Ladislav Satrapa, 2015. "Methodology of flood risk assessment from flash floods based on hazard and vulnerability of the river basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 2055-2071, December.
    3. Gianina Cojoc & Gheorghe Romanescu & Alina Tirnovan, 2015. "Exceptional floods on a developed river: case study for the Bistrita River from the Eastern Carpathians (Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1421-1451, July.
    4. Kwan Ok Lee & Hyojung Lee, 2022. "Public responses to COVID‐19 case disclosure and their spatial implications," Journal of Regional Science, Wiley Blackwell, vol. 62(3), pages 732-756, June.
    5. Bin Ou-Yang & Chun-Chao Chu & Ya-Bin Da & Xiao-Fei Liu & Hai-Ying Zhang, 2015. "Highway flood disaster risk evaluation and management in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 381-397, February.
    6. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    7. Yuanshu Jing & Jian Li & Yongyuan Weng & Jing Wang, 2014. "The assessment of drought relief by typhoon Saomai based on MODIS remote sensing data in Shanghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1215-1225, March.
    8. Huu Duy Nguyen & Thi Ha Thanh Nguyen & Quoc-Huy Nguyen & Tien Giang Nguyen & Dinh Kha Dang & Y. Nhu Nguyen & Thu Huong Bui & Ngoc Diep Nguyen & Quang-Thanh Bui & Petre Brecan & Alexandru-Ionut Petriso, 2023. "Bottom-up approach for flood-risk management in developing countries: a case study in the Gianh River watershed of Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1933-1959, September.
    9. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2016. "Flood damage assessment of an urban area in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1045-1055, September.
    10. Naiming Xie & Jianghui Xin & Sifeng Liu, 2014. "China’s regional meteorological disaster loss analysis and evaluation based on grey cluster model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1067-1089, March.
    11. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    12. Cuneyt Yavuz & Elcin Kentel & Mustafa M. Aral, 2020. "Tsunami risk assessment: economic, environmental and social dimensions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1413-1442, November.
    13. Volker Meyer & Sally Priest & Christian Kuhlicke, 2012. "Economic evaluation of structural and non-structural flood risk management measures: examples from the Mulde River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 301-324, June.
    14. Arvidsson, Björn & Johansson, Jonas & Guldåker, Nicklas, 2021. "Critical infrastructure, geographical information science and risk governance: A systematic cross-field review," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    15. Nuanchan Singkran & Jaya Kandasamy, 2016. "Developing a strategic flood risk management framework for Bangkok, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 933-957, November.
    16. Convertino, Matteo & Annis, Antonio & Nardi, Fernando, 2019. "Information-theoretic Portfolio Decision Model for Optimal Flood Management," Earth Arxiv k5aut, Center for Open Science.
    17. Qian Wang & Qi-peng Zhang & Yang-yang Liu & Lin-jing Tong & Yan-zhen Zhang & Xiao-yu Li & Jian-long Li, 2020. "Characterizing the spatial distribution of typical natural disaster vulnerability in China from 2010 to 2017," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 3-15, January.
    18. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    19. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    20. David Ocio & Christian Stocker & Ángel Eraso & Arantza Martínez & José María Sanz Galdeano, 2016. "Towards a reliable and cost-efficient flood risk management: the case of the Basque Country (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 617-639, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:83:y:2016:i:1:d:10.1007_s11069-016-2325-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.