IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i23p16051-d989648.html
   My bibliography  Save this article

Identifying Evacuation Needs and Resources Based on Volunteered Geographic Information: A Case of the Rainstorm in July 2021, Zhengzhou, China

Author

Listed:
  • Jingyi Gao

    (Department of Architecture and Building Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan)

  • Osamu Murao

    (International Research Institute of Disaster Science, Tohoku University, Sendai 980-8572, Japan)

  • Xuanda Pei

    (Department of Earth Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan)

  • Yitong Dong

    (Department of Architecture and Building Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan)

Abstract

Recently, global climate change has led to a high incidence of extreme weather and natural disasters. How to reduce its impact has become an important topic. However, the studies that both consider the disaster’s real-time geographic information and environmental factors in severe rainstorms are still not enough. Volunteered geographic information (VGI) data that was generated during disasters offered possibilities for improving the emergency management abilities of decision-makers and the disaster self-rescue abilities of citizens. Through the case study of the extreme rainstorm disaster in Zhengzhou, China, in July 2021, this paper used machine learning to study VGI issued by residents. The vulnerable people and their demands were identified based on the SOS messages. The importance of various indicators was analyzed by combining open data from socio-economic and built-up environment elements. Potential safe areas with shelter resources in five administrative districts in the disaster-prone central area of Zhengzhou were identified based on these data. This study found that VGI can be a reliable data source for future disaster research. The characteristics of rainstorm hazards were concluded from the perspective of affected people and environmental indicators. The policy recommendations for disaster prevention in the context of public participation were also proposed.

Suggested Citation

  • Jingyi Gao & Osamu Murao & Xuanda Pei & Yitong Dong, 2022. "Identifying Evacuation Needs and Resources Based on Volunteered Geographic Information: A Case of the Rainstorm in July 2021, Zhengzhou, China," IJERPH, MDPI, vol. 19(23), pages 1-21, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16051-:d:989648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/23/16051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/23/16051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui-Song Quan, 2014. "Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1569-1585, September.
    2. Boni Su & Hong Huang & Yuntao Li, 2016. "Integrated simulation method for waterlogging and traffic congestion under urban rainstorms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 23-40, March.
    3. Olszewski, Robert & Wendland, Agnieszka, 2021. "Digital Agora – Knowledge acquisition from spatial databases, geoinformation society VGI and social media data," Land Use Policy, Elsevier, vol. 109(C).
    4. Katerina Tzavella & Alexander Fekete & Frank Fiedrich, 2018. "Opportunities provided by geographic information systems and volunteered geographic information for a timely emergency response during flood events in Cologne, Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 29-57, April.
    5. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    6. Yang Xiao & Beiqun Li & Zaiwu Gong, 2018. "Real-time identification of urban rainstorm waterlogging disasters based on Weibo big data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 833-842, November.
    7. Xingqi Zhang & Maochuan Hu & Gang Chen & Youpeng Xu, 2012. "Urban Rainwater Utilization and its Role in Mitigating Urban Waterlogging Problems—A Case Study in Nanjing, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3757-3766, October.
    8. Jinping Zhang & Hang Zhang & Hongyuan Fang, 2022. "Study on Urban Rainstorms Design Based on Multivariate Secondary Return Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2293-2307, May.
    9. Boni Su & Hong Huang & Yuntao Li, 2016. "Integrated simulation method for waterlogging and traffic congestion under urban rainstorms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 23-40, March.
    10. Stathis G. Arapostathis, 2021. "A Methodology for Automatic Acquisition of Flood‐event Management Information From Social Media: the Flood in Messinia, South Greece, 2016," Information Systems Frontiers, Springer, vol. 23(5), pages 1127-1144, September.
    11. Jingming Hou & Nie Zhou & Guangzhao Chen & Miansong Huang & Guangbi Bai, 2021. "Rapid forecasting of urban flood inundation using multiple machine learning models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2335-2356, September.
    12. Junfei Chen & Liming Liu & Jinpeng Pei & Menghua Deng, 2021. "An ensemble risk assessment model for urban rainstorm disasters based on random forest and deep belief nets: a case study of Nanjing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2671-2692, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luoyang Wang & Yao Li & Hao Hou & Yan Chen & Jinjin Fan & Pin Wang & Tangao Hu, 2022. "Analyzing spatial variance of urban waterlogging disaster at multiple scales based on a hydrological and hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1915-1938, November.
    2. Zipeng Chen & Kun Li & Jianhua Du & Yi Chen & Ronggang Liu & Yi Wang, 2021. "Three-dimensional simulation of regional urban waterlogging based on high-precision DEM model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2653-2677, September.
    3. Qing Yang & Ying Sun & Xingxing Liu & Jinmei Wang, 2020. "MAS-Based Evacuation Simulation of an Urban Community during an Urban Rainstorm Disaster in China," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    4. Xianhua Wu & Yaru Cao & Yang Xiao & Ji Guo, 2020. "Finding of urban rainstorm and waterlogging disasters based on microblogging data and the location-routing problem model of urban emergency logistics," Annals of Operations Research, Springer, vol. 290(1), pages 865-896, July.
    5. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    6. Shuang Liu & Rui Liu & Nengzhi Tan, 2021. "A Spatial Improved-kNN-Based Flood Inundation Risk Framework for Urban Tourism under Two Rainfall Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    7. Mohsen Goodarzi & Nafiseh Haghtalab & Iman Saeedi & Nathan J. Moore, 2020. "Structural and functional improvement of urban fringe areas: toward achieving sustainable built–natural environment interactions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6727-6754, October.
    8. Gaoshan Wang & Guangjin Yu & Xiaohong Shen, 2020. "The Effect of Online Investor Sentiment on Stock Movements: An LSTM Approach," Complexity, Hindawi, vol. 2020, pages 1-11, December.
    9. Iman Saeedi & Mohsen Goodarzi, 2020. "Rainwater harvesting system: a sustainable method for landscape development in semiarid regions, the case of Malayer University campus in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1579-1598, February.
    10. Tong Xu & Zhiqiang Xie & Fei Zhao & Yimin Li & Shouquan Yang & Yangbin Zhang & Siqiao Yin & Shi Chen & Xuan Li & Sidong Zhao & Zhiqun Hou, 2022. "Permeability control and flood risk assessment of urban underlying surface: a case study of Runcheng south area, Kunming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 661-686, March.
    11. Nayomi Kankanamge & Tan Yigitcanlar & Ashantha Goonetilleke, 2022. "Gamifying Community Education for Enhanced Disaster Resilience: An Effectiveness Testing Study from Australia," Future Internet, MDPI, vol. 14(6), pages 1-22, June.
    12. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    13. Huafei Yu & Yaolong Zhao & Yingchun Fu, 2019. "Optimization of Impervious Surface Space Layout for Prevention of Urban Rainstorm Waterlogging: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(19), pages 1-28, September.
    14. Hongshi Xu & Kui Xu & Tianye Wang & Wanjie Xue, 2022. "Investigating Flood Risks of Rainfall and Storm Tides Affected by the Parameter Estimation Coupling Bivariate Statistics and Hydrodynamic Models in the Coastal City," IJERPH, MDPI, vol. 19(19), pages 1-18, October.
    15. Enedir Ghisi & Pedro Schondermark, 2013. "Investment Feasibility Analysis of Rainwater Use in Residences," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2555-2576, May.
    16. Lúcio Proença & Enedir Ghisi, 2013. "Assessment of Potable Water Savings in Office Buildings Considering Embodied Energy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 581-599, January.
    17. Jinping Zhang & Hang Zhang & Hongyuan Fang, 2022. "Study on Urban Rainstorms Design Based on Multivariate Secondary Return Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2293-2307, May.
    18. Gabriel Yoshino & Lindemberg Fernandes & Júnior Ishihara & Adnilson Silva, 2014. "Use of rainwater for non-potable purposes in the Amazon," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(2), pages 431-442, April.
    19. Muhammad Imran & Umair Qazi & Ferda Ofli, 2022. "TBCOV: Two Billion Multilingual COVID-19 Tweets with Sentiment, Entity, Geo, and Gender Labels," Data, MDPI, vol. 7(1), pages 1-27, January.
    20. Qingyu Huang & Jun Wang & Mengya Li & Moli Fei & Jungang Dong, 2017. "Modeling the influence of urbanization on urban pluvial flooding: a scenario-based case study in Shanghai, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1035-1055, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16051-:d:989648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.