IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v115y2023i2d10.1007_s11069-022-05605-3.html
   My bibliography  Save this article

Improved assessment of rainfall-induced railway infrastructure risk in China using empirical data

Author

Listed:
  • Weihua Zhu

    (Beijing Normal University
    Beijing Normal University)

  • Kai Liu

    (Beijing Normal University
    Beijing Normal University)

  • Ming Wang

    (Beijing Normal University
    Beijing Normal University)

  • Sadhana Nirandjan

    (Vrije Universiteit Amsterdam)

  • Elco E. Koks

    (Vrije Universiteit Amsterdam)

Abstract

Rainfall-induced hazards, such as landslides, debris flows, and floods, cause significant damage to railway infrastructure. However, an accurate assessment of rainfall-induced hazard risk to railway infrastructure is limited by the lack of regional and asset-tailored vulnerability curves. This study aims to use multisource empirical damage data to generate vulnerability curves and assess the risk of rainfall-induced hazards to railway infrastructure. The methodology is exemplified through a case study of the Chinese national railway infrastructure. Regional- and national-level vulnerability curves are derived based on historical railway damage records. These curves are combined with the daily precipitation data and the railway infrastructure market value to estimate regional- and national-level risk. The results show large variations in the shape of the vulnerability curves across the different regions. The railway infrastructure in Northeast and Northwest China is more vulnerable to rainfall-induced hazards due to low protection standards. The expected annual damage (EAD) ranges from 1.88 to 5.98 billion RMB for the Chinese railway infrastructure, with a mean value of 3.91 billion RMB. However, the risk to railway infrastructure in China shows high spatial differences due to the spatially variations of precipitation characteristics, exposure distribution, and vulnerability curves. The South, East, and Central provinces have a high risk of rainfall-induced hazards, resulting in the average EADs of 184 million RMB, 176 million RMB, and 156 million RMB, respectively, whereas the risks in the Northeast and Northwest provinces are estimated to be relatively lower. The usage of multisource empirical data enables risk assessments that include spatial details for each region. These risk assessments are highly necessary for effective decision making to achieve infrastructure resilience.

Suggested Citation

  • Weihua Zhu & Kai Liu & Ming Wang & Sadhana Nirandjan & Elco E. Koks, 2023. "Improved assessment of rainfall-induced railway infrastructure risk in China using empirical data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1525-1548, January.
  • Handle: RePEc:spr:nathaz:v:115:y:2023:i:2:d:10.1007_s11069-022-05605-3
    DOI: 10.1007/s11069-022-05605-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05605-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05605-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Huizinga & Hans de Moel & Wojciech Szewczyk, 2017. "Global flood depth-damage functions: Methodology and the database with guidelines," JRC Research Reports JRC105688, Joint Research Centre.
    2. Espinet Alegre,Xavier & Rozenberg,Julie & Rao,Kulwinder Singh & Ogita,Satoshi, 2018. "Piloting the use of network analysis and decision-making under uncertainty in transport operations : preparation and appraisal of a rural roads project in Mozambique under changing flood risk and othe," Policy Research Working Paper Series 8490, The World Bank.
    3. Tina Gerl & Heidi Kreibich & Guillermo Franco & David Marechal & Kai Schröter, 2016. "A Review of Flood Loss Models as Basis for Harmonization and Benchmarking," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-22, July.
    4. M. Papathoma-Köhle & M. Keiler & R. Totschnig & T. Glade, 2012. "Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2083-2105, December.
    5. Wenhui Liu & Jidong Wu & Rumei Tang & Mengqi Ye & Jing Yang, 2020. "Daily Precipitation Threshold for Rainstorm and Flood Disaster in the Mainland of China: An Economic Loss Perspective," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    6. E. E. Koks & J. Rozenberg & C. Zorn & M. Tariverdi & M. Vousdoukas & S. A. Fraser & J. W. Hall & S. Hallegatte, 2019. "A global multi-hazard risk analysis of road and railway infrastructure assets," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    7. Rob Lamb & Paige Garside & Raghav Pant & Jim W. Hall, 2019. "A Probabilistic Model of the Economic Risk to Britain's Railway Network from Bridge Scour During Floods," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2457-2478, November.
    8. M. Silva & S. Pereira, 2014. "Assessment of physical vulnerability and potential losses of buildings due to shallow slides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 1029-1050, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Argyroudis, Sotirios A. & Mitoulis, Stergios Aristoteles, 2021. "Vulnerability of bridges to individual and multiple hazards- floods and earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. R. L. Ciurean & H. Hussin & C. J. Westen & M. Jaboyedoff & P. Nicolet & L. Chen & S. Frigerio & T. Glade, 2017. "Multi-scale debris flow vulnerability assessment and direct loss estimation of buildings in the Eastern Italian Alps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 929-957, January.
    3. Țîncu, Roxana & Zêzere, José Luis & Crăciun, Iulia & Lazăr, Gabriel & Lazăr, Iuliana, 2020. "Quantitative micro-scale flood risk assessment in a section of the Trotuș River, Romania," Land Use Policy, Elsevier, vol. 95(C).
    4. Liang Jia & Saini Yang & Weiping Wang & Xinlong Zhang, 2022. "Impact analysis of highways in China under future extreme precipitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1097-1113, January.
    5. Qigen Lin & Ying Wang & Tianxue Liu & Yingqi Zhu & Qi Sui, 2017. "The Vulnerability of People to Landslides: A Case Study on the Relationship between the Casualties and Volume of Landslides in China," IJERPH, MDPI, vol. 14(2), pages 1-12, February.
    6. Dominik Paprotny & Heidi Kreibich & Oswaldo Morales-Nápoles & Dennis Wagenaar & Attilio Castellarin & Francesca Carisi & Xavier Bertin & Bruno Merz & Kai Schröter, 2021. "A probabilistic approach to estimating residential losses from different flood types," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2569-2601, February.
    7. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Noah Kaiser & Christina K. Barstow, 2022. "Rural Transportation Infrastructure in Low- and Middle-Income Countries: A Review of Impacts, Implications, and Interventions," Sustainability, MDPI, vol. 14(4), pages 1-48, February.
    9. Jantsje M. Mol & W. J. Wouter Botzen & Julia E. Blasch & Hans de Moel, 2020. "Insights into Flood Risk Misperceptions of Homeowners in the Dutch River Delta," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1450-1468, July.
    10. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    11. Mohamed Kefi & Binaya Kumar Mishra & Yoshifumi Masago & Kensuke Fukushi, 2020. "Analysis of flood damage and influencing factors in urban catchments: case studies in Manila, Philippines, and Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2461-2487, December.
    12. Ruben Prütz & Peter Månsson, 2021. "A GIS-based approach to compare economic damages of fluvial flooding in the Neckar River basin under current conditions and future scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1807-1834, September.
    13. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    14. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    15. Michele Loberto & Matteo Spuri, 2023. "The impact of flood risk on real estate wealth in Italy," Questioni di Economia e Finanza (Occasional Papers) 768, Bank of Italy, Economic Research and International Relations Area.
    16. Ellen Felizardo Batista & Larissa De Brum Passini & Alessander Christopher Morales Kormann, 2019. "Methodologies of Economic Measurement and Vulnerability Assessment for Application in Landslide Risk Analysis in a Highway Domain Strip: A Case Study in the Serra Pelada Region (Brazil)," Sustainability, MDPI, vol. 11(21), pages 1-22, November.
    17. Tesselaar, Max & Botzen, W.J. Wouter & Robinson, Peter J. & Aerts, Jeroen C.J.H. & Zhou, Fujin, 2022. "Charity hazard and the flood insurance protection gap: An EU scale assessment under climate change," Ecological Economics, Elsevier, vol. 193(C).
    18. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    19. Cuneyt Yavuz & Elcin Kentel & Mustafa M. Aral, 2020. "Tsunami risk assessment: economic, environmental and social dimensions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1413-1442, November.
    20. Deliang Pang & Xinxin Zhang & Jian Zhang, 2024. "A Study to Assess the Performance of Disaster Management During the 2017 Yongji County Flood in China," Public Organization Review, Springer, vol. 24(3), pages 775-790, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:115:y:2023:i:2:d:10.1007_s11069-022-05605-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.