IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v113y2022i2d10.1007_s11069-022-05339-2.html
   My bibliography  Save this article

Comparative review of data-driven landslide susceptibility models: case study in the Eastern Andes mountain range of Colombia

Author

Listed:
  • Wilmar Calderón-Guevara

    (Universidad de los Andes
    Universidad de los Andes)

  • Mauricio Sánchez-Silva

    (Universidad de los Andes)

  • Bogdan Nitescu

    (Universidad de los Andes)

  • Daniel F. Villarraga

    (Universidad de los Andes)

Abstract

Estimating the likelihood of landslides has proven to be critical for development and protection of infrastructure (e.g. pipelines, roads) and urban settlements. Currently, for regional studies of landslide susceptibility only qualitative or statistical evaluations are possible due to the large spatial variability of geological properties, topography, rainfall patterns, etc. In this paper, we explore an alternative to these approaches using data-driven methodologies to determine landslide susceptibility. We give special attention to the use of geographical information systems, machine learning and statistical techniques to build landslide susceptibility maps. These methods have input as fourteen key causative factors that might influence landslides occurrence. Additionally, feature extraction and feature selection are performed to evaluate if dimensionality reduction increases the prediction accuracy of the machine learning models. The models were compared using a case study in the Eastern Cordillera of Colombia, where the best performing model achieved a predictive performance of $$93.07\%$$ 93.07 % .

Suggested Citation

  • Wilmar Calderón-Guevara & Mauricio Sánchez-Silva & Bogdan Nitescu & Daniel F. Villarraga, 2022. "Comparative review of data-driven landslide susceptibility models: case study in the Eastern Andes mountain range of Colombia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1105-1132, September.
  • Handle: RePEc:spr:nathaz:v:113:y:2022:i:2:d:10.1007_s11069-022-05339-2
    DOI: 10.1007/s11069-022-05339-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05339-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05339-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. S. Pradeep & M. V. Ninu Krishnan & H. Vijith, 2023. "Characterising landslide susceptibility of an environmentally fragile region of the Western Ghats in Idukki district, Kerala, India, through statistical modelling and hotspot analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1623-1653, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
    2. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    3. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    4. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    5. Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Knoll, Julian & Stübinger, Johannes & Grottke, Michael, 2017. "Exploiting social media with higher-order Factorization Machines: Statistical arbitrage on high-frequency data of the S&P 500," FAU Discussion Papers in Economics 13/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    7. Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    8. Guillaume Coqueret & Tony Guida, 2020. "Training trees on tails with applications to portfolio choice," Post-Print hal-04144665, HAL.
    9. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    10. Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    11. Mercadier, Mathieu & Lardy, Jean-Pierre, 2019. "Credit spread approximation and improvement using random forest regression," European Journal of Operational Research, Elsevier, vol. 277(1), pages 351-365.
    12. Nazemi, Abdolreza & Rezazadeh, Hani & Fabozzi, Frank J. & Höchstötter, Markus, 2022. "Deep learning for modeling the collection rate for third-party buyers," International Journal of Forecasting, Elsevier, vol. 38(1), pages 240-252.
    13. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    14. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    15. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    16. Mert Edali, 2022. "Pattern‐oriented analysis of system dynamics models via random forests," System Dynamics Review, System Dynamics Society, vol. 38(2), pages 135-166, April.
    17. Jian Ni & Yue Xu, 2023. "Forecasting the Dynamic Correlation of Stock Indices Based on Deep Learning Method," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 35-55, January.
    18. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    19. Gillmann, Niels & Kim, Alisa, 2021. "Quantification of Economic Uncertainty: a deep learning approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242421, Verein für Socialpolitik / German Economic Association.
    20. Tony Guida & Guillaume Coqueret, 2019. "Ensemble Learning Applied to Quant Equity: Gradient Boosting in a Multifactor Framework," Post-Print hal-02311104, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:113:y:2022:i:2:d:10.1007_s11069-022-05339-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.