IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i2d10.1007_s11069-021-04897-1.html
   My bibliography  Save this article

Spatio‐temporal trend analysis of drought in the GAP Region, Turkey

Author

Listed:
  • Veysel Gumus

    (Harran University)

  • Oguz Simsek

    (Harran University)

  • Yavuz Avsaroglu

    (Harran University)

  • Berivan Agun

    (Harran University)

Abstract

Drought is considered to be one of the most devastating natural disasters. In recent years, determination of historical droughts has gained more importance. This can be attributed to the fact that once the trend of historical droughts is determined, it should be possible to struggle against drought more effectively. In this study, the drought analysis is performed in the Southeastern Anatolia Project (GAP) region, which is Turkey's biggest integrated project, using the monthly total precipitation data from 15 stations in nine provinces. Standardized precipitation index (SPI), being one of the most frequently used methods in the literature, is used to determine the drought indices. Temporal drought and occurrence of drought are calculated for 3, 6 and 12 month time scales. The non-parametric Mann–Kendall and Mann–Kendall Rank Correlation tests are used to determine the monotonic trends of drought indices and its year of initiation. The “Pre-whitened” method is used to remove serial correlation from time series before analysis. Linear slope of the trend is determined by Sen's Slope method, and Inverse Distance Weighting method is used for the spatial analysis. According to trends of temporal drought of the GAP region, a decreasing trend is found in 30% of the stations for 12-month SPI values with a statistical significance. Based on the results obtained from spatial analysis, there is a decreasing trend in most of the region for almost all time scales, and the slopes of trend are relatively higher in the north and south of the region.

Suggested Citation

  • Veysel Gumus & Oguz Simsek & Yavuz Avsaroglu & Berivan Agun, 2021. "Spatio‐temporal trend analysis of drought in the GAP Region, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1759-1776, November.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:2:d:10.1007_s11069-021-04897-1
    DOI: 10.1007/s11069-021-04897-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04897-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04897-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalisa, Wilson & Zhang, Jiahua & Igbawua, Tertsea & Ujoh, Fanan & Ebohon, Obas John & Namugize, Jean Nepomuscene & Yao, Fengmei, 2020. "Spatio-temporal analysis of drought and return periods over the East African region using Standardized Precipitation Index from 1920 to 2016," Agricultural Water Management, Elsevier, vol. 237(C).
    2. F. Sönmez & Ali Kömüscü & Ayhan Erkan & Ertan Turgu, 2005. "An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(2), pages 243-264, June.
    3. Qiang Zhang & Jianfeng Li & Vijay Singh & Yungang Bai, 2012. "SPI-based evaluation of drought events in Xinjiang, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 481-492, October.
    4. B. Bonaccorso & I. Bordi & A. Cancelliere & G. Rossi & A. Sutera, 2003. "Spatial Variability of Drought: An Analysis of the SPI in Sicily," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(4), pages 273-296, August.
    5. Mustafa Hakkı Aydoğdu & Mehmet Reşit Sevinç & Mehmet Cançelik & Hatice Parlakçı Doğan & Zeliha Şahin, 2020. "Determination of Farmers’ Willingness to Pay for Sustainable Agricultural Land Use in the GAP-Harran Plain of Turkey," Land, MDPI, vol. 9(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong Dong & Jing Liu & Mingjie Shi & Panxing He & Ping Li & Dahai Liu, 2024. "Seasonal Scale Climatic Factors on Grassland Phenology in Arid and Semi-Arid Zones," Land, MDPI, vol. 13(5), pages 1-21, May.
    2. Anwar Hussain & Masoud Reihanifar & Rizwan Niaz & Olayan Albalawi & Mohsen Maghrebi & Abdelkader T. Ahmed & Ali Danandeh Mehr, 2024. "Characterizing Inter-Seasonal Meteorological Drought Using Random Effect Logistic Regression," Sustainability, MDPI, vol. 16(19), pages 1-20, September.
    3. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    4. Muhammet Yılmaz & Harun Alp & Fatih Tosunoğlu & Ömer Levend Aşıkoğlu & Ebru Eriş, 2022. "Impact of climate change on meteorological and hydrological droughts for Upper Coruh Basin, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1039-1063, June.
    5. Federico Benjamín Galacho-Jiménez & Pablo Quesada-Molina & David Carruana-Herrera & Sergio Reyes-Corredera, 2022. "Application of the Analysis Time Series and Multispectral Images for the Estimation of the Conditions of the Vegetation Covers of the Natural Areas of Southern Spain," Land, MDPI, vol. 12(1), pages 1-33, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    2. G. Buttafuoco & T. Caloiero & R. Coscarelli, 2015. "Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 557-573, January.
    3. Ahmad Haseeb Payab & Umut Türker, 2018. "Analyzing temporal–spatial characteristics of drought events in the northern part of Cyprus," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(4), pages 1553-1574, August.
    4. Lina Eklund & Jonathan Seaquist, 2015. "Meteorological, agricultural and socioeconomic drought in the Duhok Governorate, Iraqi Kurdistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 421-441, March.
    5. da Silva, Antonio Samuel Alves & Stosic, Tatijana & Arsenić, Ilija & Menezes, Rômulo Simões Cezar & Stosic, Borko, 2023. "Multifractal analysis of standardized precipitation index in Northeast Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. A. Capra & S. Consoli & B. Scicolone, 2013. "Long-Term Climatic Variability in Calabria and Effects on Drought and Agrometeorological Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 601-617, January.
    7. Manish Goyal, 2014. "Statistical Analysis of Long Term Trends of Rainfall During 1901–2002 at Assam, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1501-1515, April.
    8. Babak Amirataee & Majid Montaseri, 2017. "The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 89-106, March.
    9. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    10. Holtmeyer, Melissa L. & Wang, Shuxiao & Axelbaum, Richard L., 2013. "Considerations for decision-making on distributed power generation in rural areas," Energy Policy, Elsevier, vol. 63(C), pages 708-715.
    11. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    12. Jin‐Feng Wang & Lian‐Fa Li, 2008. "Improving Tsunami Warning Systems with Remote Sensing and Geographical Information System Input," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1653-1668, December.
    13. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    14. Pedcris M. Orencio & Masahiko Fujii, 2014. "A spatiotemporal approach for determining disaster-risk potential based on damage consequences of multiple hazard events," Journal of Risk Research, Taylor & Francis Journals, vol. 17(7), pages 815-836, August.
    15. Sergio Vicente-Serrano, 2007. "Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 173-208, January.
    16. Feng Gao & Yuhu Zhang & Xiulin Ren & Yunjun Yao & Zengchao Hao & Wanyuan Cai, 2018. "Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 155-172, May.
    17. Boyang Liu & Xiang Gao & Jun Ma & Zhihui Jiao & Jianhua Xiao & Hongbin Wang, 2018. "Influence of Host and Environmental Factors on the Distribution of the Japanese Encephalitis Vector Culex tritaeniorhynchus in China," IJERPH, MDPI, vol. 15(9), pages 1-15, August.
    18. Mohamed Meddi & Ali Assani & Hind Meddi, 2010. "Temporal Variability of Annual Rainfall in the Macta and Tafna Catchments, Northwestern Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3817-3833, November.
    19. Tayeb Raziei & Bahram Saghafian & Ana Paulo & Luis Pereira & Isabella Bordi, 2009. "Spatial Patterns and Temporal Variability of Drought in Western Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 439-455, February.
    20. Masupha, Teboho E. & Moeletsi, Mokhele E., 2020. "The use of Water Requirement Satisfaction Index for assessing agricultural drought on rain-fed maize, in the Luvuvhu River catchment, South Africa," Agricultural Water Management, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:2:d:10.1007_s11069-021-04897-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.