IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i2d10.1007_s11069-020-04357-2.html
   My bibliography  Save this article

An accentuated “hot blob” over Vidarbha, India, during the pre-monsoon season

Author

Listed:
  • N. Naveena

    (K L University)

  • G. Ch. Satyanarayana

    (K L University)

  • D. V. Bhaskar Rao

    (Andhra University)

  • D. Srinivas

    (Ministry of Earth Sciences)

Abstract

A “hot blob”, distinct hot region, is identified over Vidarbha in the south-central parts of the Indian subcontinent during the pre-monsoon season from the analysis of gridded surface air maximum temperature data from India Meteorological Department for the period 1951–2019. Spatial distribution and frequencies of temperatures > 40 °C and > 42 °C establish the hot blob over Vidarbha region. A similar analysis of simulated maximum temperatures from the NEX-GDDP substantiates the revelation of the “hot blob” over Vidarbha. Further, analysis of the wind circulation at 850 hPa over South Asia region indicates that the “COL” region between the two seasonal high-pressure systems over the Indian Ocean seas, Bay of Bengal and Arabian Sea promotes accumulation of heat over Vidarbha. Further, horizontal temperature convergence complimented by strong local heating of the black soil aids and abets the sustenance of the “hot blob”. This “hot blob” region is observed to be hotter as well as having higher frequencies of hot days than the north-west desert Rajasthan region and assumes importance as its modulation causes heatwaves over the south-east coastal regions. This study establishes the presence of the hottest region over Vidarbha in south-central parts, paradoxically hotter than the desert north-west region of India.

Suggested Citation

  • N. Naveena & G. Ch. Satyanarayana & D. V. Bhaskar Rao & D. Srinivas, 2021. "An accentuated “hot blob” over Vidarbha, India, during the pre-monsoon season," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1359-1373, January.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04357-2
    DOI: 10.1007/s11069-020-04357-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04357-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04357-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott B. Power & François P. D. Delage, 2019. "Setting and smashing extreme temperature records over the coming century," Nature Climate Change, Nature, vol. 9(7), pages 529-534, July.
    2. Anton Orlov & Jana Sillmann & Asbjørn Aaheim & Kristin Aunan & Karianne Bruin, 2019. "Economic Losses of Heat-Induced Reductions in Outdoor Worker Productivity: a Case Study of Europe," Economics of Disasters and Climate Change, Springer, vol. 3(3), pages 191-211, October.
    3. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    4. Venkata B. Dodla & G. Ch. Satyanarayana & Srinivas Desamsetti, 2017. "Analysis and prediction of a catastrophic Indian coastal heat wave of 2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 395-414, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoe E. Petropoulos & Oriana Ramirez-Rubio & Madeleine K. Scammell & Rebecca L. Laws & Damaris Lopez-Pilarte & Juan José Amador & Joan Ballester & Cristina O’Callaghan-Gordo & Daniel R. Brooks, 2021. "Climate Trends at a Hotspot of Chronic Kidney Disease of Unknown Causes in Nicaragua, 1973–2014," IJERPH, MDPI, vol. 18(10), pages 1-13, May.
    2. Savin Chand & Scott Power & Kevin Walsh & Neil Holbrook & Kathleen McInnes & Kevin Tory & Hamish Ramsay & Ron Hoeke & Anthony S. Kiem, 2023. "Climate processes and drivers in the Pacific and global warming: a review for informing Pacific planning agencies," Climatic Change, Springer, vol. 176(2), pages 1-16, February.
    3. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    4. Coderoni, Silvia & Pagliacci, Francesco, 2023. "The impact of climate change on land productivity. A micro-level assessment for Italian farms," Agricultural Systems, Elsevier, vol. 205(C).
    5. Shuangzhi Li & Xiaoling Zhang & Zhongci Deng & Xiaokang Liu & Ruoou Yang & Lihao Yin, 2023. "Identifying the Critical Supply Chains for Black Carbon and CO 2 in the Sichuan Urban Agglomeration of Southwest China," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    6. Greg Lusk, 2017. "The social utility of event attribution: liability, adaptation, and justice-based loss and damage," Climatic Change, Springer, vol. 143(1), pages 201-212, July.
    7. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    8. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    9. Jie Chen & Yujie Liu & Tao Pan & Philippe Ciais & Ting Ma & Yanhua Liu & Dai Yamazaki & Quansheng Ge & Josep Peñuelas, 2020. "Global socioeconomic exposure of heat extremes under climate change," Post-Print hal-02970803, HAL.
    10. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Molly Anderson, 2015. "The role of knowledge in building food security resilience across food system domains," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(4), pages 543-559, December.
    12. Frances C. Moore, 2017. "Learning, Adaptation, And Weather In A Changing Climate," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-21, November.
    13. Dae II Jeong & Alex J. Cannon & Bin Yu, 2022. "Influences of atmospheric blocking on North American summer heatwaves in a changing climate: a comparison of two Canadian Earth system model large ensembles," Climatic Change, Springer, vol. 172(1), pages 1-21, May.
    14. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    15. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    16. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    17. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
    19. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Lyudmila Simova-Stoilova & Valya Vassileva & Urs Feller, 2016. "Selection and Breeding of Suitable Crop Genotypes for Drought and Heat Periods in a Changing Climate: Which Morphological and Physiological Properties Should Be Considered?," Agriculture, MDPI, vol. 6(2), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:2:d:10.1007_s11069-020-04357-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.