IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v102y2020i3d10.1007_s11069-020-03952-7.html
   My bibliography  Save this article

A nine-step approach for developing and implementing an “agricultural drought risk management plan”; case study: Alamut River basin in Qazvin, Iran

Author

Listed:
  • Ahmad Fatehi Marj

    (Soil Conservation and Watershed Management Research Institute (SCWMRI) of the Iranian Agricultural Research and Education Organization (AREO))

  • Farzad Hosseini Hossein Abadi

    (Soil Conservation and Watershed Management Research Institute (SCWMRI) of the Iranian Agricultural Research and Education Organization (AREO)
    Sharif University of Technology)

Abstract

Occurrence of drought, as an inevitable natural climate feature, cannot be ceased while happening. However, costs of the consequences could be alleviated using mature scientific integrated approaches. To reduce the amount of damage, it is required to provide “Contingency” and “Mitigation” action plans. For this reason, development of efficient operating instructions for various regions based on weather conditions and field studies is needed as well as having a sophisticated understanding of socioeconomic situations. This paper describes an approach to provide the first national agricultural drought risk management plan for a river basin in Iran country as a pilot. The study lasted for 3 years as a national technical research project for the “soil conservation and watershed management research institute.” To reach the objectives, besides holding workshops and specialized think-tank meetings, field researches were done. Based on the socioeconomic data sources in the basin and the results of meetings by participation of local managers and residents, the final plan was developed. Moreover, in order to carry out this research, different climatic, agricultural and local information were collected in the watershed. In the next steps, potential risks and vulnerabilities of various agricultural sectors due to the hazard were evaluated. In this study, a nine-step approach to develop an agricultural drought risk management plan proposing different scientific–managerial phases based on the latest experts’ opinions, released international scientific best practices, and existing conditions governing the region was followed. With respect to the average income of US$ one million from agriculture and animal husbandry in the river basin, total drought loss varies from US$ 86,000 to US$ 258,000 for a range of light to very intense drought conditions, respectively. The setup of these nine executive phases defined monitoring, forecasting, and warning steps in working teams and managed the subprograms in partnership with stakeholders and decision-makers to mitigate the rate of drought damage from 30 to 47% (depending on the severity of the drought condition).

Suggested Citation

  • Ahmad Fatehi Marj & Farzad Hosseini Hossein Abadi, 2020. "A nine-step approach for developing and implementing an “agricultural drought risk management plan”; case study: Alamut River basin in Qazvin, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1187-1205, July.
  • Handle: RePEc:spr:nathaz:v:102:y:2020:i:3:d:10.1007_s11069-020-03952-7
    DOI: 10.1007/s11069-020-03952-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-03952-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-03952-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinyu Fu & Mark Svoboda & Zhenghong Tang & Zhijun Dai & Jianjun Wu, 2013. "An overview of US state drought plans: crisis or risk management?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1607-1627, December.
    2. Hong Wu & Donald Wilhite, 2004. "An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(1), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chujie Gao & Haishan Chen & Shanlei Sun & Victor Ongoma & Wenjian Hua & Hedi Ma & Bei Xu & Yang Li, 2018. "A potential predictor of multi-season droughts in Southwest China: soil moisture and its memory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 553-566, March.
    2. Araceli Martin-Candilejo & Francisco J. Martin-Carrasco & Ana Iglesias & Luis Garrote, 2023. "Heading into the Unknown? Exploring Sustainable Drought Management in the Mediterranean Region," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    3. Xiaojing Liu & Jiquan Zhang & Donglai Ma & Yulong Bao & Zhijun Tong & Xingpeng Liu, 2013. "Dynamic risk assessment of drought disaster for maize based on integrating multi-sources data in the region of the northwest of Liaoning Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1393-1409, February.
    4. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    5. Sergio Vicente-Serrano, 2007. "Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 173-208, January.
    6. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
    7. Jincai Zhao & Qianqian Liu & Heli Lu & Zheng Wang & Ke Zhang & Pan Wang, 2021. "Future droughts in China using the standardized precipitation evapotranspiration index (SPEI) under multi-spatial scales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 615-636, October.
    8. Stricevic, Ruzica & Cosic, Marija & Djurovic, Nevenka & Pejic, Borivoj & Maksimovic, Livija, 2011. "Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower," Agricultural Water Management, Elsevier, vol. 98(10), pages 1615-1621, August.
    9. Nadir Elagib, 2015. "Drought risk during the early growing season in Sahelian Sudan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1549-1566, December.
    10. Yaojie Yue & Jian Li & Xinyue Ye & Zhiqiang Wang & A-Xing Zhu & Jing-ai Wang, 2015. "An EPIC model-based vulnerability assessment of wheat subject to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1629-1652, September.
    11. Juan Quijano & Miguel Jaimes & Marco Torres & Eduardo Reinoso & Luisarturo Castellanos & Jesús Escamilla & Mario Ordaz, 2015. "Event-based approach for probabilistic agricultural drought risk assessment under rainfed conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1297-1318, March.
    12. P. Vijaya Kumar & Mohammed Osman & P. K. Mishra, 2019. "Development and application of a new drought severity index for categorizing drought-prone areas: a case study of undivided Andhra Pradesh state, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 793-812, June.
    13. Joan Lopez-Bustins & Diana Pascual & Eduard Pla & Javier Retana, 2013. "Future variability of droughts in three Mediterranean catchments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1405-1421, December.
    14. Hao Guo & Xingming Zhang & Fang Lian & Yuan Gao & Degen Lin & Jing’ai Wang, 2016. "Drought Risk Assessment Based on Vulnerability Surfaces: A Case Study of Maize," Sustainability, MDPI, vol. 8(8), pages 1-22, August.
    15. Alex Dunne & Yuriy Kuleshov, 2023. "Drought risk assessment and mapping for the Murray–Darling Basin, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 839-863, January.
    16. Yaxu Wang & Juan Lv & Hongquan Sun & Huiqiang Zuo & Hui Gao & Yanping Qu & Zhicheng Su & Xiaojing Yang & Jianming Yin, 2022. "Dynamic agricultural drought risk assessment for maize using weather generator and APSIM crop models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3083-3100, December.
    17. Wallander, Steven & Hrozencik, Aaron & Aillery, Marcel, 2022. "Irrigation Organizations: Drought Planning and Response," USDA Miscellaneous 316790, United States Department of Agriculture.
    18. Mohammad Mokhtari & Robiah Adnan & Ibrahim Busu, 2013. "A new approach for developing comprehensive agricultural drought index using satellite-derived biophysical parameters and factor analysis method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1249-1274, February.
    19. Theresa Jedd & Kelly Helm Smith, 2023. "Drought-Stricken U.S. States Have More Comprehensive Water-Related Hazard Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 601-617, January.
    20. Jing Zhang & Kaushal Raj Gnyawali & Yi Shang & Yang Pu & Lijuan Miao, 2022. "Spatial agglomeration of drought-affected area detected in northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 145-161, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:102:y:2020:i:3:d:10.1007_s11069-020-03952-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.