IDEAS home Printed from https://ideas.repec.org/a/spr/minecn/v37y2024i1d10.1007_s13563-024-00428-z.html
   My bibliography  Save this article

Investigating the impact of company announcements on stock prices: an application of machine learning on Australian lithium market

Author

Listed:
  • Ahmad Kianrad

    (University of Technology Sydney)

  • Mohadeseh Najafi Arani

    (Edith Cowan University)

  • Karim Hasani

    (Flinders University)

  • Masoumeh Zargar

    (Edith Cowan University)

  • Eila Erfani

    (University of Technology Sydney
    University of New South Wales)

  • Amir Razmjou

    (Edith Cowan University
    Edith Cowan University)

Abstract

This paper investigates the effects of various types of announcements made by lithium producers on stock prices. We collected data from 40 lithium-producing companies listed on the world's largest stock exchanges, spanning from May 2020 to September 2022. To analyze the impact of announcements such as quoted and unquoted securities, market announcements, company reports, public meetings and presentations, financial announcements, and technical announcements on stock prices, we employed an extreme gradient boosting (XGBoost) model. Our results indicate that stock exchange market announcements and announcements about public meetings and presentations significantly influenced the stock prices of all eight large-cap companies studied. Announcements about public meetings and presentations were crucial predictors of stock prices for 73% of all companies analyzed. Additionally, positive financial announcements were key predictors for 70% of the companies. These findings suggest that investors should consider these predictors when making investment decisions in the lithium-related stock market. This study contributes to the existing literature by providing empirical evidence on the impact of different types of announcements made by lithium producers on stock prices. Furthermore, the XGBoost model used in this study can be applied to other industries and markets to analyze the impact of various types of announcements on stock prices.

Suggested Citation

  • Ahmad Kianrad & Mohadeseh Najafi Arani & Karim Hasani & Masoumeh Zargar & Eila Erfani & Amir Razmjou, 2024. "Investigating the impact of company announcements on stock prices: an application of machine learning on Australian lithium market," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(1), pages 163-172, March.
  • Handle: RePEc:spr:minecn:v:37:y:2024:i:1:d:10.1007_s13563-024-00428-z
    DOI: 10.1007/s13563-024-00428-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13563-024-00428-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13563-024-00428-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    2. Basak, Suryoday & Kar, Saibal & Saha, Snehanshu & Khaidem, Luckyson & Dey, Sudeepa Roy, 2019. "Predicting the direction of stock market prices using tree-based classifiers," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 552-567.
    3. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Post-Print hal-03676638, HAL.
    4. Liu, Donghui & Gao, Xiangyun & An, Haizhong & Qi, Yabin & Wang, Ze & Jia, Nanfei & Chen, Zhihua, 2020. "Exploring behavior changes of the lithium market in China: Toward technology-oriented future scenarios," Resources Policy, Elsevier, vol. 69(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    2. Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    3. Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    4. Mercadier, Mathieu & Lardy, Jean-Pierre, 2019. "Credit spread approximation and improvement using random forest regression," European Journal of Operational Research, Elsevier, vol. 277(1), pages 351-365.
    5. Junwei Chen, 2023. "Analysis of Bitcoin Price Prediction Using Machine Learning," JRFM, MDPI, vol. 16(1), pages 1-25, January.
    6. Zheng, Shuxian & Tan, Zhanglu & Xing, Wanli & Zhou, Xuanru & Zhao, Pei & Yin, Xiuqi & Hu, Han, 2022. "A comparative exploration of the chaotic characteristics of Chinese and international copper futures prices," Resources Policy, Elsevier, vol. 78(C).
    7. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    8. Xu, Yuhong & Zhao, Xinyao, 2024. "How does node centrality in a financial network affect asset price prediction?," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    9. John D. Graham & John A. Rupp & Eva Brungard, 2021. "Lithium in the Green Energy Transition: The Quest for Both Sustainability and Security," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    10. Min-Yuh Day & Paoyu Huang & Yirung Cheng & Yensen Ni, 2023. "Investing Strategies for Trading Stocks as Overreaction Triggered by Technical Trading Rules with Big Data Concerns," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 148-161, October.
    11. Perry Sadorsky, 2021. "Predicting Gold and Silver Price Direction Using Tree-Based Classifiers," JRFM, MDPI, vol. 14(5), pages 1-21, April.
    12. Ashish Kumar & Abeer Alsadoon & P. W. C. Prasad & Salma Abdullah & Tarik A. Rashid & Duong Thu Hang Pham & Tran Quoc Vinh Nguyen, 2021. "Generative Adversarial Network (GAN) and Enhanced Root Mean Square Error (ERMSE): Deep Learning for Stock Price Movement Prediction," Papers 2112.03946, arXiv.org.
    13. Wei Liu & Yoshihisa Suzuki & Shuyi Du, 2024. "Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2035-2068, May.
    14. Zouhaier Dhifaoui, 2022. "Determinism and Non-linear Behaviour of Log-return and Conditional Volatility: Empirical Analysis for 26 Stock Markets," South Asian Journal of Macroeconomics and Public Finance, , vol. 11(1), pages 69-94, June.
    15. Wang, Xiao-Qing & Qin, Meng & Moldovan, Nicoleta-Claudia & Su, Chi-Wei, 2023. "Bubble behaviors in lithium price and the contagion effect: An industry chain perspective," Resources Policy, Elsevier, vol. 83(C).
    16. Dimingo, Roselyn & Muteba Mwamba, John W. & Bonga-Bonga, Lumengo, 2021. "Prediction of Stock Market Direction: Application of Machine Learning Models," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 74(4), pages 499-536.
    17. Saber Talazadeh & Dragan Perakovic, 2024. "SARF: Enhancing Stock Market Prediction with Sentiment-Augmented Random Forest," Papers 2410.07143, arXiv.org.
    18. Satya Verma & Satya Prakash Sahu & Tirath Prasad Sahu, 2024. "Two-Stage Hybrid Feature Selection Approach Using Levy’s Flight Based Chicken Swarm Optimization for Stock Market Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2193-2224, June.
    19. Goutte, Stéphane & Le, Hoang-Viet & Liu, Fei & von Mettenheim, Hans-Jörg, 2023. "Deep learning and technical analysis in cryptocurrency market," Finance Research Letters, Elsevier, vol. 54(C).
    20. Sadorsky, Perry, 2022. "Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices?," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:37:y:2024:i:1:d:10.1007_s13563-024-00428-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.